3 resultados para index model

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding and predicting patterns of distribution and abundance of marine resources is important for con- servation and management purposes in small-scale artisanal fisheries and industrial fisheries worldwide. The goose barnacle (Pollicipes pollicipes) is an important shellfish resource and its distribution is closely related to wave exposure at different spatial scales. We modelled the abundance (percent coverage) of P. pollicipes as a function of a simple wave exposure index based on fetch estimates from digitized coastlines at different spatial scales. The model accounted for 47.5% of the explained deviance and indicated that barnacle abundance increases non-linearly with wave exposure at both the smallest (metres) and largest (kilometres) spatial scales considered in this study. Distribution maps were predicted for the study region in SW Portugal. Our study suggests that the relationship between fetch-based exposure indices and P. pollicipes percent cover may be used as a simple tool for providing stakeholders with information on barnacle distribution patterns. This information may improve assessment of harvesting grounds and the dimension of exploitable areas, aiding management plans and support- ing decision making on conservation, harvesting pressure and surveillance strategies for this highly appreciated and socio- economically important marine resource.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our goal in this paper is to extend previous results obtained for Newtonian and secondgrade fluids to third-grade fluids in the case of an axisymmetric, straight, rigid and impermeable tube with constant cross-section using a one-dimensional hierarchical model based on the Cosserat theory related to fluid dynamics. In this way we can reduce the full threedimensional system of equations for the axisymmetric unsteady motion of a non-Newtonian incompressible third-grade fluid to a system of equations depending on time and on a single spatial variable. Some numerical simulations for the volume flow rate and the the wall shear stress are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A specific modified constitutive equation for a third-grade fluid is proposed so that the model be suitable for applications where shear-thinning or shear-thickening may occur. For that, we use the Cosserat theory approach reducing the exact three-dimensional equations to a system depending only on time and on a single spatial variable. This one-dimensional system is obtained by integrating the linear momentum equation over the cross-section of the tube, taking a velocity field approximation provided by the Cosserat theory. From this reduced system, we obtain the unsteady equations for the wall shear stress and mean pressure gradient depending on the volume flow rate, Womersley number, viscoelastic coefficient and flow index over a finite section of the tube geometry with constant circular cross-section.