5 resultados para implicit relations of spatial neighborhood

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports alternation of D2 extension-related and D3 contraction-related microfabrics in the northern hanging wall block of a gneiss dome-like structure recognized in the Évora Massif (Ossa-Morena Zone). In the Arraiolos – Santo Antonio de Alcorrego traverse high- to low-grade mylonites are dominant. Microfabrics related to D2 ductile deformation and M2 high-amphibolite to greenschist facies characterize an extensional shear zone with telescoping metamorphic isograds. D2 microstructures indicate shear sense with top-to-SE. Superposition of D3 contraction developed under greenschist facies (M3) producing folding of D2 microfabrics, mylonitization of granites along strike-slip shear zones and retrogression of M2 mineral assemblages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regarding the EU policies of territorial cohesion is common to assume that, having the same been successful (in Portugal), regional disparities decreased. The purpose of this article is to assess the veracity of this allegation, for that considering the values of employment and unemployment rates by municipalities, determined in the last two censuses held in Portugal, i.e. 2001 and 2011. In doing so, spatial econometric techniques are used, namely local indicators of spatial association and spatial clusters, in order to better understand the eventual process of spatial convergence that may have occurred in Portugal in that period. The results point towards a spatial convergence of employment rates (both in total and by genres) and also of female unemployment rates but a spatial divergence of male unemployment rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous survey of otters ( Lutra lutra L. 1758) in Spain, different causes were invoked to explain the frequency of the species in each province. To find common causes of the distribution of the otter in Spain, we recorded a number of spatial, environmental and human variables in each Spanish province. We then performed a stepwise linear multiple regression of the proportion of positive sites of otter in the Spanish provinces separately on each of the three groups of variables. Geographic longitude, January air humidity, soil permeability and highway density were the variables selected. A linear regression of the proportion of otter presence on these variables explained 62.4% of the variance. We then used the selected variables in a partial regression analysis to specify which proportions of the variation are explained exclusively by spatial, environmental and human factors, and which proportions are attributable to interactions between these components. Pure environmental effects accounted for only 5.5% of the variation, while pure spatial and pure human effects explained 18% and 9.7%, respectively. Shared variation among the components totalled 29.2%, of which 10.9% was explained by the interaction between environmental and spatial factors. Human factors explained globally less variance than spatial and environmental ones, but the pure human influence was higher than the pure environmental one. We concluded that most of the variation in the proportion of occurrences of otter in Spanish provinces is spatially structured, and that environmental factors have more influence on otter presence than human ones; however, the human influence on otter distribution is less structured in space, and thus can be more disruptive. This effect of large infrastructures on wild populations must be taken into account when planning large-scale conservation policies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site-specific management (SSM) is a form of precision agriculture whereby decisions on resource application and agronomic practices are improved to better match soil and crop requirements as they vary in the field. SSM enables the identification of regions (homogeneous management zones) within the area delimited by field boundaries. These subfield regions constitute areas that have similar permanent characteristics. Traditional soil and pasture sampling and the necessary laboratory analysis are time-consuming, labour-intensive and cost prohibitive, not viable from a SSM perspective because it needs a large number of soil and pasture samples in order to achieve a good representation of soil properties, nutrient levels and pasture quality and productivity. The main objective of this work was to evaluate technologies which have potential for monitoring aspects related to spatial and temporal variability of soil nutrients and pasture green and dry matter yield (respectively, GM and DM, in kg/ha) and support to decision making for the farmer. Three types of sensors were evaluated in a 7ha pasture experimental field: an electromagnetic induction sensor (“DUALEM 1S”, which measures the soil apparent electrical conductivity, ECa), an active optical sensor ("OptRx®", which measures the NDVI, “Normalized Difference Vegetation Index”) and a capacitance probe ("GrassMaster II" which estimates plant mass). The results indicate the possibility of using a soil electrical conductivity probe as, probably, the best tool for monitoring not only some of the characteristics of the soil, but also those of the pasture, which could represent an important help in simplifying the process of sampling and support SSM decision making, in precision agriculture projects. On the other hand, the significant and very strong correlations obtained between capacitance and NDVI and between any of these parameters and the pasture productivity shows the potential of these tools for monitoring the evolution of spatial and temporal patterns of the vegetative growth of biodiverse pasture, for identifying different plant species and variability in pasture yield in Alentejo dry-land farming systems. These results are relevant for the selection of an adequate sensing system for a particular application and open new perspectives for other works that would allow the testing, calibration and validation of the sensors in a wider range of pasture production conditions, namely the extraordinary diversity of botanical species that are characteristic of the Mediterranean region at the different periods of the year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to ecological theory, the coexistence of competitors in patchy environments may be facilitated by hierarchical spatial segregation along axes of environmental variation, but empirical evidence is limited. Cabrera and water voles show a metapopulation-like structure in Mediterranean farmland, where they are known to segregate along space, habitat, and time axes within habitat patches. Here, we assess whether segregation also occurs among and within landscapes, and how this is influenced by patch-network and matrix composition. We surveyed 75 landscapes, each covering 78 ha, where we mapped all habitat patches potentially suitable for Cabrera and water voles, and the area effectively occupied by each species (extent of occupancy). The relatively large water vole tended to be the sole occupant of landscapes with high habitat amount but relatively low patch density (i.e., with a few large patches), and with a predominantly agricultural matrix, whereas landscapes with high patch density (i.e.,many small patches) and low agricultural cover, tended to be occupied exclusively by the small Cabrera vole. The two species tended to co-occur in landscapes with intermediate patch-network and matrix characteristics, though their extents of occurrence were negatively correlated after controlling for environmental effects. In combination with our previous studies on the Cabrera-water vole system, these findings illustrated empirically the occurrence of hierarchical spatial segregation, ranging from withinpatches to among-landscapes. Overall, our study suggests that recognizing the hierarchical nature of spatial segregation patterns and their major environmental drivers should enhance our understanding of species coexistence in patchy environments.