2 resultados para gc-tsd
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Several studies have suggested that differences in the natural rooting ability of plant cuttings could be attributed to differences in endogenous auxin levels. Hence, during rooting experiments, it is important to be able to routinely monitor the evolution of endogenous levels of plant hormones. This work reports the development of a new method for the quantification of free auxins in auxin-treated Olea europaea (L.) explants, using dispersive liquid–liquid microextraction (DLLME) and microwave assisted derivatization (MAD) followed by gas chromatography/mass spectrometry (GC/MS) analysis. Linear ranges of 0.5–500 ng mL 1 and 1–500 mg mL 1 were used for the quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), respectively. Determined by serial dilutions, the limits of detection (LOD) and quantification (LOQ) were 0.05 ng mL 1 and 0.25 ng mL 1, respectively for both compounds. When using the calibration curve for determination, the LOQ corresponded to 0.5 ng mL 1 (IAA) and 0.5 mg mL 1 (IBA). The proposed method proved to be substantially faster than other alternatives, and allowed free auxin quantification in real samples of semi-hardwood cuttings and microshoots of two olive cultivars. The concentrations found in the analyzed samples are in the range of 0.131–0.342 mg g 1 (IAA) and 20–264 mg g 1 (IBA).
Resumo:
The vapor pressure of four liquid 1H,1H-perfluoroalcohols (CF3(CF2)n(CH2)OH, n ¼ 1, 2, 3, 4), often called odd-fluorotelomer alcohols, was measured as a function of temperature between 278 K and 328 K. Liquid densities were also measured for a temperature range between 278 K and 353 K. Molar enthalpies of vaporization were calculated from the experimental data. The results are compared with data from the literature for other perfluoroalcohols as well as with the equivalent hydrogenated alcohols. The results were modeled and interpreted using molecular dynamics simulations and the GC-SAFT-VR equation of state.