2 resultados para folding
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
A arte de dobrar papel teve origem na China no século I ou II d.C., e difundiu-se pelo Japão no século VI. Esta arte milenar tem cativado a atenção dos estudiosos ao longo de séculos. Inicialmente ligada ao culto religioso, adoptada posteriormente pelos samurais como entretenimento, é hoje mundialmente aceite como uma arte. Transmitido de mães para filhas durante gerações, foi no século XIX, pela mão do pedagogo Frõebel, introduzido no currículo escolar alemão, sendo desde então considerado por muitos como um instrumento primordial na aquisição de conhecimentos, especialmente na área a geometria e por outros um elemento básico de interdisciplinaridade. Este trabalho pretende demonstrar as potencialidades do Origami como instrumento essencial nas diversas áreas curriculares, especialmente no estudo de conceitos matemáticos, nomeadamente no âmbito da geometria e a sua inclusão no currículo escolar. O uso do Origami na sala de aula inspira curiosidade e motiva a criatividade. ABSTRACT: The art of paper folding arose in China during the first or second century A.D. By the sixth century, it had spread to Japan. This millenary art got the scientific community's attention for centuries. At the beginning, folding was associated with a ceremonial act, later on it was use by Samurais as entertainment, and today it is accepted as an art by all. Transmitted from mothers to children during generations, it was introduced by Frõebel in the German curriculum and since then has been considered by some as an instrument for teaching basic geometry and by others as essential in interdisciplinary concepts. With this work we would like to show the Origami potentialities as an instrument connecting different curriculum areas, especially in mathematics, particularly in geometry and his inclusion in education curriculum. The use of Origami in the classroom helps children to obtain and consolidate basic concepts and inspire curiosity and promote their creativity.
Resumo:
An integrated interpretation of the late Paleozoic structural and geochronological record of the Iberian Massif is presented and discussed under the perspective of a Gondwana-Laurussia collision giving way to the Variscan orogen. Compressional and extensional structures developed during the building of the Variscan orogenic crust of Iberia are linked together into major tectonic events operating at lithosphere scale. A review of the tectonometamorphic and magmatic evolution of the IberianMassif reveals backs and forths in the overall conver- gence between Gondwana and Laurussia during theamalgamation of Pangea in late Paleozoic times. Stages dom- inated by lithosphere compression are characterized by subduction, both oceanic and continental, development of magmatic arcs, (over- and under-) thrusting of continental lithosphere, and folding. Variscan convergence re- sulted in the eventual transference of a large allochthonous set of peri-Gondwanan terranes, the Iberian Allochthon, onto the Gondwana mainland. The Iberian Allochthon bears the imprint of previous interaction be- tween Gondwana and Laurussia, including their juxtaposition after the closure of the Rheic Ocean in Lower De- vonian times. Stages governed by lithosphere extension are featured by the opening of two short-lived oceanic basins that dissected previous Variscan orogenic crust, first in the Lower-Middle Devonian, following the closure of the Rheic Ocean, and then in the early Carboniferous, following the emplacement of the peri-Gondwanan allochthon. An additional, major intra-orogenic extensional event in the early-middle Carboniferous dismem- bered the Iberian Allochthon into individual thrust stacks separated by extensional faults and domes. Lateral tec- tonics played an important role through the Variscan orogenesis, especially during the creation of new tectonic blocks separated by intracontinental strike-slip shear zones in the late stages of continental convergence.