3 resultados para existence

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we consider the second-order discontinuous equation in the real line, u′′(t)−ku(t)=f(t,u(t),u′(t)),a.e.t∈R, with k>0 and f:R3→R an L1 -Carathéodory function. The existence of homoclinic solutions in presence of not necessarily ordered lower and upper solutions is proved, without periodicity assumptions or asymptotic conditions. Some applications to Duffing-like equations are presented in last section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the second order discontinuous equation in the real line, (a(t)φ(u′(t)))′ = f(t,u(t),u′(t)), a.e.t∈R, u(-∞) = ν⁻, u(+∞)=ν⁺, with φ an increasing homeomorphism such that φ(0)=0 and φ(R)=R, a∈C(R,R\{0})∩C¹(R,R) with a(t)>0, or a(t)<0, for t∈R, f:R³→R a L¹-Carathéodory function and ν⁻,ν⁺∈R such that ν⁻<ν⁺. We point out that the existence of heteroclinic solutions is obtained without asymptotic or growth assumptions on the nonlinearities φ and f. Moreover, as far as we know, this result is even new when φ(y)=y, that is, for equation (a(t)u′(t))′=f(t,u(t),u′(t)), a.e.t∈R.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work gives sufficient conditions for the solvability of the fourth order coupled system┊ u⁽⁴⁾(t)=f(t,u(t),u′(t),u′′(t),u′′′(t),v(t),v′(t),v′′(t),v′′′(t)) v⁽⁴⁾(t)=h(t,u(t),u′(t),u′′(t),u′′′(t),v(t),v′(t),v′′(t),v′′′(t)) with f,h: [0,1]×ℝ⁸→ℝ some L¹- Carathéodory functions, and the boundary conditions {┊ u(0)=u′(0)=u′′(0)=u′′(1)=0 v(0)=v′(0)=v′′(0)=v′′(1)=0. To the best of our knowledge, it is the first time in the literature where two beam equations are considered with full nonlinearities, that is, with dependence on all derivatives of u and v. An application to the study of the bending of two elastic coupled campled beams is considered.