2 resultados para ex situ SEM
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The development of simple and rapid new approaches for analysing microbial communities colonising Cultural Heritage materials is pivotal for its safeguard. Fluorescence in situ hybridisation technique using ribosomal RNA directed probes (RNA-FISH) has demonstrated a great potential for this purpose. A protocol for analysing filamentous fungi in mortars has been already developed in previous studies. In this work this protocol has been adapted for detecting bacteria and yeasts. Good results have been obtained for the analysis of suspensions of isolates. In this way, the optimized protocol was applied in microsamples from synthetic mortar artificially inoculated with yeast and bacterial isolates. Promising results have been obtained for the ex situ analysis of yeast and bacteria thriving in mortar microsamples.
Resumo:
Microorganisms are involved in the deterioration of Cultural Heritage. Thus, there is a need to enhance the techniques used for their detection and identification. RNA Fluorescent In Situ Hybridization (RNA-FISH) has been successfully applied for phylogenetic identification of the viable components of the microbial communities colonizing artworks both in situ and ex situ. Until recently, it was time-consuming, taking not less than 6 h for the analysis. We have developed an RNA-FISH in suspension protocol that allowed ex situ analysis of microorganisms involved in artworks’ biodeterioration in 5 h. In this work, three modified protocols, involving microwave heating, were evaluated for further shortening two of the four main critical steps in RNA-FISH: hybridization and washing. The original and modified protocols were applied in cellular suspensions of bacteria and yeast isolates. The results obtained were evaluated and compared in terms of detectability and specificity of the signals detected by epifluorescence microscopy. One of the methods tested showed good and specific FISH signals for all the microorganisms selected and did not produce signals evidencing non-specific or fixation-induced fluorescence. This 3 h protocol allows a remarkable reduction of the time usually required for performing RNA-FISH analysis in Cultural Heritage samples. Thus, a rapid alternative for analyzing yeast and bacteria cells colonizing artworks’ surfaces by RNA-FISH is presented in this work.