3 resultados para ecological dynamics
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The Charter of European Planning 2013 presents a Vision for the future of European cities and regions, highlighting the sustainability of cities and the preservation of urban ecosystems, integrating the man-made environment with the natural ecosystems and contribute to the well-being and quality of life of their inhabitants and other stakeholders. Thus, urban public policies are crucial to the improvement of the landscape ecological system, achievable by city planning and design. The paper aims to analyse if public urban policies in Portugal have been integrating strategies and/or guidelines to enhance the ecological system of the landscape. Then, which new perspectives are possible, framed by the recently approved law Bases of Public Policy of Soils, Land Management and Urban Planning (2014). This new law, in contrast with the previous ones, don’t allow reserving land to urbanize, in municipal master plans. Moreover, it is possible to revert land classified for urban purposes in those plans into rustic soils (when it is not yet infra-structured or built). It allows creating new planning and design dynamics, convert several areas and including them in the urban ecological structure, essential to the enhancement of landscape ecological system. This is a filed of work where landscape architecture has huge responsibilities, by associating and harmonize man-made environment with natural systems, enlightening sustainability consistent with conservation and improvement of Nature while contributing to the well-being and quality of life of Man. A sustainability that is ethical, aesthetic, ecological and cultural. The study is supported by a case study – the city of Évora. The ultimate goal is to propose measures to promote larger and better integration of ecological component in urban public policies, framed by the new territorial management law, taking into account and highlighting the specificities of the landscape system – Man and Nature – at the local level.
Resumo:
The metapopulation paradigm is central in ecology and conservation biology to understand the dynamics of spatially-structured populations in fragmented landscapes. Metapopulations are often studied using simulation modelling, and there is an increasing demand of user-friendly software tools to simulate metapopulation responses to environmental change. Here we describe the MetaLandSim R package, mwhich integrates ideas from metapopulation and graph theories to simulate the dynamics of real and virtual metapopulations. The package offers tools to (i) estimate metapopulation parameters from empirical data, (ii) to predict variation in patch occupancy over time in static and dynamic landscapes, either real or virtual, and (iii) to quantify the patterns and speed of metapopulation expansion into empty landscapes. MetaLandSim thus provides detailed information on metapopulation processes, which can be easily combined with land use and climate change scenarios to predict metapopulation dynamics and range expansion for a variety of taxa and ecological systems.
Resumo:
The ALqueva hydro-meteorological EXperiment (ALEX) field campaign took place monthly during summer 2014 and consisted in in situ measurements and sampling of water and biological elements, collected from three fixed platforms placed in the lacustrine zone. This integrated overview, including meteorological, environmental and biological results contributes to improve the knowledge of the reservoir dynamics and therefore to propose adequate management measures to preserve the observed biological integrity.