3 resultados para diffusive gradients

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Living organisms are open dissipative thermodynamic systems that rely on mechanothermo-electrochemical interactions to survive. Plant physiological processes allow plants to survive by converting solar radiation into chemical energy, and store that energy in form that can be used. Mammals catabolize food to obtain energy that is used to fuel, build and repair the cellular components. The exergy balance is a combined statement of the first and second laws of thermodynamics. It provides insight into the performance of systems. In this paper, exergy balance equations for both mammal’s and green plants are presented and analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate.We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim To examine the distributional patterns of vertebrates (including birds, bats, carnivores and lagomorphs) along landscape composition and configuration gradients to better understand the effects of landscape modification on occurrence patterns at both species and community level. Location The region of Alentejo, a forest-dominated area of southern Portugal. Methods The study area was framed using 1647 hexagonal plots, each of 259 ha in size. Composition and configuration gradients were obtained for each plot by integrating the proportions of the main land cover types and their configuration patterns using multivariate analyses. Species-specific vertebrate responses were investigated using data from 75 plots in which carnivores, bats and lagomorphs were sampled, and from 135 plots in the case of birds. Community- level responses were investigated through changes in species richness and beta-diversity in 57 plots where all vertebrate groups were simultaneously sampled. At the species-level, an information-theoretic approach was used to determine the effects of landscape gradients on species’ responses. At the community level, Mantel tests were used to determine between-plot differences in species composition using the Sørensen dissimilarity index. Results We found that the occurrence patterns of most vertebrate species were best predicted by composition-related gradients, although configuration gradients were also frequently included in species-specific occurrence models. We also found a weak correlation between species richness and most landscape gradients suggesting a turnover in the identity of species, something that was corroborated by the stronger correlation between environmental gradients and beta-diversity measures. The amount of forest cover and landscape complexity (estimated as the heterogeneity in the size and number of land cover types) were the main composition and configuration gradients determining vertebrate responses at both species and community level. Main conclusions Our work contributes to a more refined understanding of the mechanisms underlying species distributional patterns in real-world human-modified landscapes. By uncovering generalities of species with multiple ecological requirements and by describing the entire landscape mosaic through landscape gradients, we also suggest that our work greatly helps to fill the gap between existing conceptual landscape models aimed to understand species distributional patterns in human-modified landscapes.