2 resultados para correlation-based feature selection

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a process for the classifi cation of new residential electricity customers. The current state of the art is extended by using a combination of smart metering and survey data and by using model-based feature selection for the classifi cation task. Firstly, the normalized representative consumption profi les of the population are derived through the clustering of data from households. Secondly, new customers are classifi ed using survey data and a limited amount of smart metering data. Thirdly, regression analysis and model-based feature selection results explain the importance of the variables and which are the drivers of diff erent consumption profi les, enabling the extraction of appropriate models. The results of a case study show that the use of survey data signi ficantly increases accuracy of the classifi cation task (up to 20%). Considering four consumption groups, more than half of the customers are correctly classifi ed with only one week of metering data, with more weeks the accuracy is signifi cantly improved. The use of model-based feature selection resulted in the use of a signifi cantly lower number of features allowing an easy interpretation of the derived models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a methodology for short-term load forecasting based on genetic algorithm feature selection and artificial neural network modeling. A feed forward artificial neural network is used to model the 24-h ahead load based on past consumption, weather and stock index data. A genetic algorithm is used in order to find the best subset of variables for modeling. Three data sets of different geographical locations, encompassing areas of different dimensions with distinct load profiles are used in order to evaluate the methodology. The developed approach was found to generate models achieving a minimum mean average percentage error under 2 %. The feature selection algorithm was able to significantly reduce the number of used features and increase the accuracy of the models.