3 resultados para common tree species
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The pinewood nematode (PWN), Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD), is a serious pest and pathogen of forest tree species, in particular among the genus Pinus. It was first reported from Japan in the beginning of the XXth century, where it became the major ecological catastrophe of pine forests, with losses reaching over 2 million m3/ year in the 1980s. It has since then spread to other Asian countries such as China, Taiwan and Korea, causing serious losses and economic damage. In 1999, the PWN was first detected in the European Union (EU), in Portugal, and immmediately prompted several government (national and EU) actions to assess the extent of the nematode’s presence, and to contain B. xylophilus and its insect vector (Monochamus galloprovincialis) to an area with a 30km radius in the Setúbal Peninsula, 20 km south of Lisbon. International wood trade, with its political as well as economic ramifications, has been seriously jeopardized. The origin of the population of PWN found in Portugal remains elusive. Several hypotheses may be considered regarding pathway analysis, basically from two general origins: North America or the Far East (Japan or China). World trade of wood products such as timber, wooden crates, palettes, etc… play an important role in the potential dissemination of the pinewood nematode. In fact, human activities involving the movement of wood products may be considered the single most important factor in spreading of the PWN. Despite the dedicated and concerted actions of government agencies, this disease continues to spread. Very recently (2006), in Portugal, forestry and phytosanitary authorities (DGRF and DGPC) have announced a new strategy for the control and ultimately the erradication of the nematode, under the coordination of the national program for the control of the pinewood nematode (PROLUNP). Research regarding the bioecology of the nematode and insect as well as new detection methods, e.g., involving real-time PCR, has progressed since 1999. International agreements (GATT, WTO) and sharing of scientific information is of paramount importance to effectively control the nematode and its vector, and thus protect our forest ecosystems and forest economy.
Resumo:
Pine wilt disease (PWD) is one of the most damaging events affecting conifer forests (in particular Pinus spp.), in the Far East (Japan, China and Korea), North America (USA and Canada) and, more recently, in the European Union (Portugal). In Japan it became catastrophic, damaging native pine species (Pinus thunbergii and P. densiflora), and becoming the main forest problem, forcing some areas to be totally replaced by other tree species. The pine wilt nematode (PWN) Bursaphelenchus xylophilus, endemic, with minor damage, to North America, was introduced in Japan in the early XX century and then spread to Asia (China and Korea) in the 1980s. In 1999 it was detected for the first time in Portugal, where, due to timely detection and immediate government action, it was initially (1999-2008) contained to a small area 30 km SE of Lisbon. In 2008, the PWN spread again to central Portugal, the entire country now being classified as “affected area”. Being an A1 quarantine pest, the EU acted to avoid further PWN spreading and to eradicate it, by actions including financial support for surveyes and eradication, annual inspections and research programs. Experience from control actions in Japan included aerial spraying of insecticides to control the insect vector (the Cerambycid beetle Monochamus alternatus), injection of nematicides to the trunk of infected trees, slashing and burning of large areas out of control, beetle traps, biological control and tree breeding programs. These actions allowed some positive results, but also unsuccessful cases due to the PWN spread and virulence. Other Asian countries also followed similar strategies, but the nematode is still spreading in many regions. In Portugal, despite lower damage than Asia, PWD is still significant with high losses to the forestry industry. New ways of containing PWD include preventing movement of contaminated wood, cutting symptomatic trees and monitoring. Despite a national and EU legislative body, no successful strategy to control and eventually eradicate the nematode and the disease will prevail without sound scientific studies regarding the nematode and vector(s) bioecology and genetics, the ecology and ecophysiology of the pine tree species, P. pinaster and P. pinea , as well as the genomics and proteomics of pathogenicity (resistance/ susceptibility).
Resumo:
The “dicótilo-palmácea” mixed forest is found in the fluvial plains (floodplains) of watercourses on the Ceará semiarid region (Brazil), distinguishing from the surrounding vegetation (caatinga) by the prevalence of larger tree species. In the river’s margins, presenting high variability in the extension of the riverbanks, arise floodplains in pedologic complexes mainly composed by neossols and argissols, resulting from the deposition of sediments. In these areas of high fertility soils and subjected to flooding during part of the year, it develops a particular type of riparian vegetation dominated by carnauba palm tree (Copernicia prunifera (Mill.) H.E. Moore) forming a particular type of riparian forest, designated by carnaubal palm forest. We aimed to carry out floristic and phytosociological surveys of carnauba palm forests located in the northern region of Ceará. The classical sigmatist method of Braun-Blanquet was applied and classification analysis (Twinspan) was perfomed. The field work occurred in March 2014 and 2016 in eight areas: Fazenda Pedra Branca (03º 37’ 10’’ S e 40º 18’ 30’’ W, 104 m asl), Vale do Rio Bom Jesus (04º 04’ 42’’ S e 39º 57’ 08’’ W, 200 m asl), Lagoa do Peixe (03º 56’ 28’’ S e 40º 23’ 23’’ W, 97 m asl), Fazenda Peixes (04º 06’ 03’’ S e 40º 32’ 43’’ W, 114 m asl), Fazenda Natividade (04º 02’ 50’’ S e 40º 29’ 03’’ W, 109 m asl), Fazenda Morro Alto (02º 53’ 42’’ S e 39º 54’ 51’’ W, 16 m asl), Fazenda Araticum (03º 04’ 58’’ S e 40º 09’ 36’’ W, 19 m asl) and Fazenda Experimental da UVA (03º 37' 04'' S 40º 18' 18'' W, 200 m asl).The floristic list consists of 170 species, distributed between 127 genera and 50 families. Twenty-seven Brazilian endemic species were identified, from which 8 are exclusive of the Caatinga biome. The Fabaceae was the most representative family, with the highest number of species (28), followed by Poaceae (17), Malvaceaea (14), Euphorbiaceae (12), Asteraceaea (9), Convolvulaceae and Rubiaceae (9). The dominant life forms were therophytes (34%), phanerophytes (30%) and chamaephytes (18%). Two communities were identified as a result of the classification analysis using the Twinspan.