3 resultados para classifier, pragmatics, information transport, symbolic logic
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The intersection of Artificial Intelligence and The Law stands for a multifaceted matter, and its effects set the advances on culture, organization, as well as the social matters, when the emergent information technologies are taken into consideration. From this point of view, the weight of formal and informal Conflict Resolution settings should be highlighted, and the use of defective data, information or knowledge must be emphasized. Indeed, it is hard to do it with traditional problem solving methodologies. Therefore, in this work the focus is on the development of decision support systems, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks. It is intended to evaluate the Quality-of-Judgments and the respective Degree-of-Confidence that one has on such happenings.
Resumo:
The nosocomial infections are a growing concern because they affect a large number of people and they increase the admission time in healthcare facilities. Additionally, its diagnosis is very tricky, requiring multiple medical exams. So, this work is focused on the development of a clinical decision support system to prevent these events from happening. The proposed solution is unique once it caters for the explicit treatment of incomplete, unknown, or even contradictory information under a logic programming basis, that to our knowledge is something that happens for the first time.
Resumo:
Declarative techniques such as Constraint Programming can be very effective in modeling and assisting management decisions. We present a method for managing university classrooms which extends the previous design of a Constraint-Informed Information System to generate the timetables while dealing with spatial resource optimization issues. We seek to maximize space utilization along two dimensions: classroom use and occupancy rates. While we want to maximize the room use rate, we still need to satisfy the soft constraints which model students’ and lecturers’ preferences. We present a constraint logic programming-based local search method which relies on an evaluation function that combines room utilization and timetable soft preferences. Based on this, we developed a tool which we applied to the improvement of classroom allocation in a University. Comparing the results to the current timetables obtained without optimizing space utilization, the initial versions of our tool manages to reach a 30% improvement in space utilization, while preserving the quality of the timetable, both for students and lecturers.