4 resultados para building energy saving

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This document addresses the direct and indirect use of energy in European organic greenhouse horticulture (OGH) with the aim of reviewing available means for making it more environmental friendly and identifying knowledge gaps that should be addressed to attain this aim. The first observation is that there is no common regulation for energy use in OGH, which is not unexpected, since the need for climatisation is not uniformly distributed in the EU (and outside). Accordingly, the EU directive on organic agriculture does not set limitations on the use of energy, but rather promotes the responsible use of energy and of natural resources. The restrictions and rules of most private standards are slightly more stringent. Some standards have specific restrictions on the amount and sources of energy and/or on the seasonal use of energy for heating. Some standards also address processes that may affect (in)direct energy use, such as cultivation methods, mulching, lighting and growing media or substrates. However, most private standards have no or little restrictions or regulations on energy use. Accordingly, it should not surprise that very little quantitative information is available about energy use in OGH. In the present document we have filled the gaps with data with estimates drawn on energy use in conventional greenhouses. With respect to ongoing research, whereas many of the present research results about energy use and saving in conventional greenhouses are relevant (and also applied) in OGH, little research is devoted to address the energy use that is peculiar to OGH, particularly energy use for humidity control. In short, there are still a lot of knowledge gaps to improve quality and to lower energy use in organic greenhouses. The purpose of this document is a summary of present relevant knowledge about energy use and energy saving and of the perspective for improvement. In particular, the goal is to make an overview on the methods and technologies which can be used to reduce the energy use in OGH. We start from the assumption that methods and technologies that are used for reducing direct and indirect energy in conventional greenhouses can also be applied in organic greenhouses. Research on reducing energy use in conventional greenhouses is also more widely available because the area of conventional greenhouse horticulture is much larger than the area of OGH. When implementing these methods and techniques we should take into account the specific characteristics of organic agriculture like soil-based cultivation, use of organic fertilizers and the limited use of crop protection products. This document is organised as follows: first we report the results of a survey about energy use and relevant standards in the countries participating to the COST action (chapter 1); then we review the energy use for climatisation: heating (chapter 2) and humidity (chapter 3). In chapter 4 we review the available design and management means that would either reduce energy use and/or increase energy use efficiency by increasing productivity of OGH. In chapter 5 we present a short summary of existing information on indirect energy use, that is the energy required to manufacture production means (greenhouse structure and cover, fertilisers, equipment etc.) and for crop protection, particularly steaming, and briefly discuss possible savings. Finally (chapter 6) we review briefly the potential for application of renewable energy sources in OGH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although recruitment patterns of Pollicipes pollicipes (Crustacea: Scalpelliformes) in the wild have been inves- tigated, no studies have yet focused on the factors that affect settlement. In the present paper, settlement of P. pollicipes on conspecifics (gregarious settlement) was investigated in the laboratory as a function of environmental conditions (hydrody- namics, temperature, light and salinity), larval age and batch. This study aimed to understand how these factors modulate set- tlement in the laboratory and elucidate how they might impact recruitment patterns in nature. Maximum attachment on adults was 30-35%, with a one-week metamorphosis rate of 70-80%. Batch differences affected both attachment and metamorpho- sis. Attachment rate was higher at natural salinity (30-40 psu), with lower salinity (20 psu) decreasing metamorphosis rate. Cyprid attachment was stimulated by light conditions and circulating water. This might relate to a preference for positioning high in the water column in nature, but also to increased cyprid-surface contact in conditions of circulating water. Older cyprids (3 or 6 days) showed higher attachment than un-aged larvae, though fewer 6-day-old larvae metamorphosed. Tem- perature did not affect attachment rate, but the metamorphosis rate decreased at 14°C (compared with 17 or 20°C), implying that differences in temperature during the breeding season can affect how quickly cyprids metamorphose to the juvenile. Cyprids survived for prolonged periods ( 20 days; 40% survival), likely due to efficient energy saving by intercalating long periods of inactivity with fast bursts of activity upon stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results of the implementation of a self-consumption maximization strategy tested in a real-scale Vanadium Redox Flow Battery (VRFB) (5 kW, 60 kWh) and Building Integrated Photovoltaics (BIPV) demonstrator (6.74 kWp). The tested energy management strategy aims to maximize the consumption of energy generated by a BIPV system through the usage of a battery. Whenever possible, the residual load is either stored in the battery to be used later or is supplied by the energy stored previously. The strategy was tested over seven days in a real-scale VRF battery to assess the validity of this battery to implement BIPV-focused energy management strategies. The results show that it was possible to obtain a self-consumption ratio of 100.0%, and that 75.6% of the energy consumed was provided by PV power. The VRFB was able to perform the strategy, although it was noticed that the available power (either to charge or discharge) varied with the state of charge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work; Resumo: Avanços na integracão de potência fotovoltaica e producão de energia em sistemas práticos Esta tese apresenta avanços na integração de potência e energia fotovoltaica (PV) em sistemas práticos, tais como centrais existentes ou a rede eléctrica pública. Come ça por analisar o estado corrente do fotovoltaico no mundo e aborda algumas das suas limitações. O trabalho feito para esta tese de doutoramento começou pelo desenvolvimento de um modelo para calcular os sombreamentos que ocorrem em grandes campos fotovoltaicos, e depois apresenta um estudo sobre a integração um sistema fotovoltaico em uma central eléctrica a bióg as. As ultimas secções da tese focam-se no trabalho feito para o projecto PVCROPS, que consistiu na construção e operação de dois demonstratores, cada um formado por um sistema fotovoltaico e bateria conectados a um edíficio e a rede eléctrica pública. Estes protótipos foram posteriormente utilizados para testar estratégias de gestão de energia (EMS) e para validar a operação de duas baterias avançadas (bateria de Iões de Li tio e bateria de Fluxo Redox de Van adio) e a sua utiliza ção para habitações e centrais PV. A tese está dividida em 7 capitulos: O capitulo 1 apresenta uma introdução para explicar e desenvolver as principais questões que foram investigadas nesta tese; O capitulo 2 mostra o desenvolvimento de um modelo baseado em traçados de raios para calcular sombreamentos mútuos em grandes centrais PV (com e sem seguidores); O capitulo 3 mostra a simulação da hibridização de uma central electrica a biogas com uma central PV, e utilizando o biógas como armazenamento de energia. Os capitulos 4 e 5 apresentam a construção, programação e operação inicial dos dois demonstradores (Capitúlo 4), o teste de EMS orientadas para sistemas PV em habitações (Capítulo 5). Finalmente, o capítulo 6 sugere algumas futuras linhas de investigação que poderão seguir esta tese, e o Capítulo 7 faz uma sinopse das principais conclusões deste trabalho.