4 resultados para biogas,cephalopods.
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
This paper presents the development of a combined experimental and numerical approach to study the anaerobic digestion of both the wastes produced in a biorefinery using yeast for biodiesel production and the wastes generated in the preceding microbial biomass production. The experimental results show that it is possible to valorise through anaerobic digestion all the tested residues. In the implementation of the numerical model for anaerobic digestion, a procedure for the identification of its parameters needs to be developed. A hybrid search Genetic Algorithm was used, followed by a direct search method. In order to test the procedure for estimation of parameters, first noise-free data was considered and a critical analysis of the results obtain so far was undertaken. As a demonstration of its application, the procedure was applied to experimental data.
Resumo:
Anaerobic digestion (AD) of wastewater is a very interesting option for waste valorization, energy production and environment protection. It is a complex, naturally occurring process that can take place inside bioreactors. The capability of predicting the operation of such bioreactors is important to optimize the design and the operation conditions of the reactors, which, in part, justifies the numerous AD models presently available. The existing AD models are not universal, have to be inferred from prior knowledge and rely on existing experimental data. Among the tasks involved in the process of developing a dynamical model for AD, the estimation of parameters is one of the most challenging. This paper presents the identifiability analysis of a nonlinear dynamical model for a batch reactor. Particular attention is given to the structural identifiability of the model, which considers the uniqueness of the estimated parameters. To perform this analysis, the GenSSI toolbox was used. The estimation of the model parameters is achieved with genetic algorithms (GA) which have already been used in the context of AD modelling, although not commonly. The paper discusses its advantages and disadvantages.
Resumo:
This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work; Resumo: Avanços na integracão de potência fotovoltaica e producão de energia em sistemas práticos Esta tese apresenta avanços na integração de potência e energia fotovoltaica (PV) em sistemas práticos, tais como centrais existentes ou a rede eléctrica pública. Come ça por analisar o estado corrente do fotovoltaico no mundo e aborda algumas das suas limitações. O trabalho feito para esta tese de doutoramento começou pelo desenvolvimento de um modelo para calcular os sombreamentos que ocorrem em grandes campos fotovoltaicos, e depois apresenta um estudo sobre a integração um sistema fotovoltaico em uma central eléctrica a bióg as. As ultimas secções da tese focam-se no trabalho feito para o projecto PVCROPS, que consistiu na construção e operação de dois demonstratores, cada um formado por um sistema fotovoltaico e bateria conectados a um edíficio e a rede eléctrica pública. Estes protótipos foram posteriormente utilizados para testar estratégias de gestão de energia (EMS) e para validar a operação de duas baterias avançadas (bateria de Iões de Li tio e bateria de Fluxo Redox de Van adio) e a sua utiliza ção para habitações e centrais PV. A tese está dividida em 7 capitulos: O capitulo 1 apresenta uma introdução para explicar e desenvolver as principais questões que foram investigadas nesta tese; O capitulo 2 mostra o desenvolvimento de um modelo baseado em traçados de raios para calcular sombreamentos mútuos em grandes centrais PV (com e sem seguidores); O capitulo 3 mostra a simulação da hibridização de uma central electrica a biogas com uma central PV, e utilizando o biógas como armazenamento de energia. Os capitulos 4 e 5 apresentam a construção, programação e operação inicial dos dois demonstradores (Capitúlo 4), o teste de EMS orientadas para sistemas PV em habitações (Capítulo 5). Finalmente, o capítulo 6 sugere algumas futuras linhas de investigação que poderão seguir esta tese, e o Capítulo 7 faz uma sinopse das principais conclusões deste trabalho.
Resumo:
This work aims to study the application of Genetic Algorithms in anaerobic digestion modeling, in particular when using dynamical models. Along the work, different types of bioreactors are shown, such as batch, semi-batch and continuous, as well as their mathematical modeling. The work intendeds to estimate the parameter values of two biological reaction model. For that, simulated results, where only one output variable, the produced biogas, is known, are fitted to the model results. For this reason, the problems associated with reverse optimization are studied, using some graphics that provide clues to the sensitivity and identifiability associated with the problem. Particular solutions obtained by the identifiability analysis using GENSSI and DAISY softwares are also presented. Finally, the optimization is performed using genetic algorithms. During this optimization the need to improve the convergence of genetic algorithms was felt. This need has led to the development of an adaptation of the genetic algorithms, which we called Neighbored Genetic Algorithms (NGA1 and NGA2). In order to understand if this new approach overcomes the Basic Genetic Algorithms (BGA) and achieves the proposed goals, a study of 100 full optimization runs for each situation was further developed. Results show that NGA1 and NGA2 are statistically better than BGA. However, because it was not possible to obtain consistent results, the Nealder-Mead method was used, where the initial guesses were the estimated results from GA; Algoritmos Evolucionários para a Modelação de Bioreactores Resumo: Neste trabalho procura-se estudar os algoritmos genéticos com aplicação na modelação da digestão anaeróbia e, em particular, quando se utilizam modelos dinâmicos. Ao longo do mesmo, são apresentados diferentes tipos de bioreactores, como os batch, semi-batch e contínuos, bem como a modelação matemática dos mesmos. Neste trabalho procurou-se estimar o valor dos parâmetros que constam num modelo de digestão anaeróbia para o ajustar a uma situação simulada onde apenas se conhece uma variável de output, o biogas produzido. São ainda estudados os problemas associados à optimização inversa com recurso a alguns gráficos que fornecem pistas sobre a sensibilidade e identifiacabilidade associadas ao problema da modelação da digestão anaeróbia. São ainda apresentadas soluções particulares de idenficabilidade obtidas através dos softwares GENSSI e DAISY. Finalmente é realizada a optimização do modelo com recurso aos algoritmos genéticos. No decorrer dessa optimização sentiu-se a necessidade de melhorar a convergência e, portanto, desenvolveu-se ainda uma adaptação dos algoritmos genéticos a que se deu o nome de Neighboured Genetic Algorithms (NGA1 e NGA2). No sentido de se compreender se as adaptações permitiam superar os algoritmos genéticos básicos e atingir as metas propostas, foi ainda desenvolvido um estudo em que o processo de optimização foi realizado 100 vezes para cada um dos métodos, o que permitiu concluir, estatisticamente, que os BGA foram superados pelos NGA1 e NGA2. Ainda assim, porque não foi possivel obter consistência nos resultados, foi usado o método de Nealder-Mead utilizado como estimativa inicial os resultados obtidos pelos algoritmos genéticos.