3 resultados para beach profile evolution

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flavonoids (including anthocyanins) are wine compounds with important anti-oxidant activity, protecting the cells against oxidative processes, preventing cardiovascular and neurodegenerative diseases, cancer, among others (Antoniolli et al. 2015; Castañeda-Ovando et al. 2009; Hosu et al. 2014; Huang et al. 2009; Kong et al. 2003). Anthocyanins in grapes at harvest are determinant to red wine quality and their development in the grape must be characterised in order to determine the most suitable date for the harvest. Thus the aim of this research is the evaluation of anthocyanins composition in two red wine grape varieties from véraison continuing through ripening. Anthocyanins were quantified by high resolution liquid chromatography (HPLC-DAD). Additionally, the total phenols content were quantified by UV-Vis Spectrometry. The anthocyanins’ profile evolution may be dependent on the variety and ripening phase. During ripening grape samples have shown an increase of coumaryl derivatives. This information may lead us to understand the anthocyanins biosynthesis pathway in different grape varieties. The development of anthocyanins from the véraison seems to follow a pattern that coincides with the increasing accumulation of soluble sugars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alcantarilha lowland, partly barred by a well developed barrier, including foredunes covering Pleistocene-Holocene beachrock and aeolianite, develops across the Alcantarilha infilled estuary, the beach-dune extending further SE until the Salgados lagoon. A topographic and coring survey revealed a peculiar feature at the leeward toe of the dune ridge close to the inlet area: a sandy fan with location, shape and morphology suggesting emplacement by single or multiple overwash of the barrier tip rather than tidal forcing. Its storm or tsunami origin and age are under investigation, and the only time-constrain available at present is that it should post-date ca. 6600 cal BP, the most recent in situ aeolianite (Moura et al., 2007) dated so far. METHODS, DATA SET AND RESULTS The fan boundaries are distinctive in aerial photos and satellite images: it is roughly ellipsoidal, ~200 m wide and ~300 m elongated paralleling the shoreline, rising ~ 0.9-1.2 m above the surrounding floodplain surface. Detailed topography shows that its short axis aligns with SW-NE elongated (though irregular) depressions in the dune crest, which link the beach with the fan. This could have favoured funnelling of, or erosion by, water overtopping the barrier but, in either case, the fan should correspond to extreme and abrupt event(s) of coastal flooding. 18 trenches and cores were performed in the exposed area of the fan and nearby flood plain to obtain samples and data on its sedimentology, lithostratigraphy and geometry. The fan consists of well sorted and rounded sand (Fig. 2). It thins away and wedges out landwards of the apex (located near Alc29T) where it is partly covered by dune sand. Its lower boundary is undulating and marked by textural contrast between sand (fan) and underlying mud (alluvial/lagoonal); an accumulation of marine-sourced perforated pebbles showing limited lateral continuity may pinpoint this boundary near the foredune (core Alc 25, ca. 80 m westward of profile in Fig.1); mud-balls were also observed immediately above this surface in cores and trenches. As the washover was probably emplaced in a barred lagoonal/estuarine floodplain setting, the fan’s northern outer belt is enclosed by low-energy sediments (not shown in Fig. 2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examines the long profiles of tributaries of the Tejo (Tagus) and Zêzere rivers in central eastern Portugal (West Iberia) in order to provide new insights into the patterns, timing and controls on drainage development during the Pleistocene to Holocene incision stage. The long profiles were extracted from lower order tributary streams associated with the trunk drainage of the Tejo River and one main tributary, the Zêzere River (Fig. 1). These streams flow through a landscape strongly influenced by variations in bedrock lithology (mainly granites and metasediments), fault structures delimiting crustal blocks with distinct uplift rates, and a base-level lowering history (tectonic uplift / eustatic). The long profiles of the tributaries of the Tejo and Zêzere rivers record a series of transient and permanent knickpoints. The permanent knickpoints have direct correlation with the bedrock strength, corresponding to the outcropping of very hard quartzites or to the transition from softer (slates/metagreywaques) to harder (granite) basement. The analyzed streams/rivers record also an older transient knickpoint/knickzone separating: a) an upstream relict graded profile, with lower steepness and higher concavity, that reflects a long period of quasi-equilibrium conditions reached after the beginning of the incision stage; and b) a downstream reach displaying a rejuvenated long profile, with steeper gradient and lower concavity, particularly for the final segment, which is often convex (Fig. 2). The rejuvenated reaches testify the upstream propagation of several incision waves that are the response of each stream to continuous or increasing crustal uplift and dominant periods of base-level lowering by the trunk drainages, coeval of low sea level conditions. The long profiles and their morphological configurations enabled spatial and relative temporal patterns of incision to be quantified for each individual tributary stream. The incision values of streams flowing in uplifted blocks of the Portuguese Central Range (PCR) (ca.380-280 m) indicate differential uplift and are higher than the incision values of streams flowing on the adjacent South Portugal planation surface – the Meseta (ca. 200 m). The normalized steepness index, calculated using the method of Wobus et al. (2006), proved to be sensitive to active tectonics, as lower ksn values were found in relict graded profiles of streams located in less uplifted blocks, (e.g. Sertã stream in the PCR), or in those flowing through tectonic depressions. Fig. 1 – Geological map of the study area. 1 – fluvial terraces (Pleistocene); 2 – sedimentary cover (Paleogene and Neogene); 3 – slates and metasandstones (Devonian); 4 – slates and quartzites (Silurian); 5 – quartzites (Ordovician); 6 – slates and metagreywackes (Precambrian to Cambrian); 7 – slates, metagreywackes and limestones (Precambrian); 8 – granites and ortogneisses; 9 – diorites and gabros; 10 - fault. SFf – Sobreira Formosa fault; Sf – Sertã fault; Pf – Ponsul fault; Gf – Grade fault. The differential uplift indicated by the distribution of the ksn values and by the fluvial incision was likely accumulated on a few major faults, as the Sobreira Formosa fault (SFf), thus corroborating the tectonic activity of these faults. Due to the fact that the relict graded profiles can be correlated with other geomorphic references documented in the study area, namely the T1 terrace of the Tagus River (with an age of ca. 1 Myr), the following incision rates can be estimated: a) for the studied streams located in uplifted blocks of the PCR, 0.38 m/kyr to 0.28 m/kyr; b) for the streams flowing on the South Portugal planation surface, 0.20 m/kyr. The differential uplift inferred between crustal blocks in the study area corroborates the neotectonic activity of the bordering faults, which has been proposed in previous studies based upon less robust data. Fig. 2 – Longitudinal profile of the Nisa stream a tributary of the Tejo River. Note the equilibrium relict profile upstream the older transient knickpoint (hatched line) and the downstream rejuvenated profile (continuous line). Legend: tKP – transient knickpoint; rKp – resistant knickpoint; Mt – schist and phyllite; Gr – granite; Hf – hornfels; Og – orthogneisse. In the inset Distance – Slope plots, fill circles correspond to the relict graded profile, crosses correspond to the rejuvenated profile located downstream the older transient knickpoint (tKP).