2 resultados para aridification, COI, dispersal, rainforest contraction, refugia
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Context Seed dispersal is recognized as having profound effects on the distribution, dynamics and structure of plant populations and communities. However, knowledge of how landscape structure shapes carnivore-mediated seed dispersal patterns is still scarce, thereby limiting our understanding of large-scale plant population processes. Objectives We aim to determine how the amount and spatial configuration of forest cover impacted the relative abundance of carnivorous mammals, and how these effects cascaded through the seed dispersal kernels they generated. Methods Camera traps activated by animal movement were used for carnivore sampling. Colour-coded seed mimics embedded in common figs were used to know the exact origin of the dispersed seed mimics later found in carnivore scats. We applied this procedure in two sites differing in landscape structure. Results We did not find between-site differences in the relative abundance of the principal carnivore species contributing to seed dispersal patterns, Martes foina. Mean dispersal distance and the probability of long dispersal events were higher in the site with spatially continuous and abundant forest cover, compared to the site with spatially aggregated and scarcer forest cover. Seed deposition closely matched the spatial patterning of forest cover in both study sites, suggesting behaviour-based mechanisms underpinning seed dispersal patterns generated by individual frugivore species. Conclusions Our results provide the first empirical evidence of the impact of landscape structure on carnivore-mediated seed dispersal kernels. They also indicate that seed dispersal kernels generated strongly depend on the effect that landscape structure exerts on carnivore populations, particularly on habitat-use preferences.
Resumo:
This study examines the importance of thermal refugia along the majority of the geographical range of a key inter- tidal species (Patella vulgata Linnaeus, 1758) on the Atlantic coast of Europe. We asked whether differences between sun-exposed and shaded microhabitats were responsible for differences in physiological stress and ecological perfor- mance and examined the availability of refugia near equatorial range limits. Thermal differences between sun- exposed and shaded microhabitats are consistently associated with differences in physiological performance, and the frequency of occurrence of high temperatures is most probably limiting the maximum population densities sup- ported at any given place. Topographical complexity provides thermal refugia throughout most of the distribution range, although towards the equatorial edges the magnitude of the amelioration provided by shaded microhabitats is largely reduced. Importantly, the limiting effects of temperature, rather than being related to latitude, seem to be tightly associated with microsite variability, which therefore is likely to have profound effects on the way local popu- lations (and consequently species) respond to climatic changes.