3 resultados para age and mixing
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Based on four samples of Portuguese family-owned firmsdi) 185 young, low-sized family-owned firms; ii) 167 young, high-sized familyowned firms; iii) 301 old, low-sized family-owned firms; and iv) 353 old, high-sized family-owned firms d we show that age and size are fundamental characteristics in family-owned firms’ financing decisions. The multiple empirical evidence obtained allows us to conclude that the financing decisions of young, low-sized family-owned firms are quite close to the assumptions of Pecking Order Theory, whereas those of old, high-sized family-owned firms are quite close to what is forecast by Trade-Off Theory. The lesser information asymmetry associated with greater age, the lesser likelihood of bankruptcy associated with greater size, as well as the lesser concentration of ownership and management consequence of greater age and size, may be especially important in the financing decisions of family-owned firms. In addition, we find that GDP, interest rate and periods of crisis have a greater effect on the debt of young, low-sized family-owned firms than on that of family-owned firms of the remainder research samples.
Resumo:
This paper presents our approach of identifying the profile of an unknown user based on the activities of known users. The aim of author profiling task of PAN@CLEF 2016 is cross-genre identification of the gender and age of an unknown user. This means training the system using the behavior of different users from one social media platform and identifying the profile of other user on some different platform. Instead of using single classifier to build the system we used a combination of different classifiers, also known as stacking. This approach allowed us explore the strength of all the classifiers and minimize the bias or error enforced by a single classifier.
Resumo:
The occurrence of mafic (mainly gabbros and diorites) and felsic (syenites and granites) rocks, in close spatial association, in the Elvas region, at the northern part of the Ossa-Morena Zone, could be interpreted as a single bimodal (alkaline) plutonic complex. However, in spite of scarce isotopic (Sm-Nd) data, the co-magmatic origin of both rock groups (mafic and felsic) has already been questioned [1]. Based on the mineral chemistry of primary clinopyroxenes (Di–Hd, %En: 45.5 – 27.2) and representative whole-rock analyses, gabbros and diorites of the Elvas massif show a transitional character between alkaline and non-alkaline fields and wide compositions: SiO2 (42.47 – 58.00 wt%); TiO2 (0.24 – 1.68 wt%); Y/Nb (4.0 – 10.7); Th (0.1 – 6.8 ppm); Zr (18.6 – 576.9 ppm). The felsic group is composed by highly differentiated rocks which correspond to distinct levels of silica saturation and alkalinity. Peralkaline syenites usually present sodic (riebeckite) and sodic-calcic (aegirine-augite, ferrowinchite) inosilicates and reveal quite variable compositions: SiO2 (57.50 – 72.07 wt%); TiO2 (0.10 – 1.45 wt%); Th (1.7 – 67.0 ppm); Zr (133.0 – 4800.0 ppm). The alkaline granites show hedenbergite as the characteristic inosilicate, presenting relatively common compositions: SiO2 (61.85 – 78.06 wt%); TiO2 (0.21 – 0.58 wt%); Th (11.8 – 38.4 ppm); Zr (317.3 – 1234.6 ppm) [2]. Recent Sm-Nd isotopic results, on a total of 18 whole-rock samples (6 mafites and 12 felsites), allow new and more consistent interpretation concerning the petrogenesis of these plutonic rocks. Assuming an age of 490 Ma [3], the felsic rocks provide (0.6 < Nd490 < 4.3), similar to other contemporary (per)alkaline rocks of this region [4], reflecting magmatic extractions from time-integrated depleted mantle sources followed by variable and incomplete mixing (and/or AFC-type) processes with enriched, probably crustal sources. This alkaline/peralkaline magmatism is thought to represent the main regional record of the rifting event which presumably led to the opening of the Rheic Ocean. On the other hand, the mafic plutonic rocks of the Elvas massif cannot represent the magmatic precursors of these syenites and granites as they show completely distinct Nd isotopic ratios (3.7 < Nd490 < 1.2) indicating important contribution of long-term enriched (crustal) sources. Instead, considering the age and the Nd isotopic signature of other mafic plutonic unit emplaced nearby (the Campo Maior massif: ca. 370 Ma; 6.0 < Nd370 < 5.2) [5], and recalculating the isotopic ratios of the Elvas massif for the same age (4.3 < Nd370 < 1.6), it is plausible to consider that these plutons (Campo Maior and Elvas) can be coeval and representative of the Variscan magmatism in this region. In such hypothesis, the differences between these isotopic values could be explained, on a time-integrated basis, either by magmatic sources for the Elvas massif less enriched in LREE than the sources involved in the Campo Maior massif, or, if both plutonites share similar depleted mantle sources, by magmatic differentiation paths considerably affected by crustal contamination processes, which reached higher degrees in the Campo Maior massif.