17 resultados para Wind power
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The paper is about the simulation of malfunctions in an onshore wind energy conversion system powered by a doubly fed induction generator with a two-level power converter, handling only the slip power. These malfunctions are analysed in order to be able to investigate the impact in the wind power system behaviour by comparison before, during and after the malfunctions. The malfunctions considered in the simulation includes are localized in the DC-link of the converter and in the phase change in rectifier.
Resumo:
This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on electricity price and wind power is considered through a set of scenarios. Thermal units are modeled by variable costs, start-up costs and technical operating constraints, such as: ramp up/down limits and minimum up/down time limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated production of thermal and wind energy generation, aiming to maximize the expected profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.
Resumo:
This paper deals with the self-scheduling problem of a price-taker having wind and thermal power production and assisted by a cyber-physical system for supporting management decisions in a day-ahead electric energy market. The self-scheduling is regarded as a stochastic mixed-integer linear programming problem. Uncertainties on electricity price and wind power are considered through a set of scenarios. Thermal units are modelled by start-up and variable costs, furthermore constraints are considered, such as: ramp up/down and minimum up/down time limits. The stochastic mixed-integer linear programming problem allows a decision support for strategies advantaging from an effective wind and thermal mixed bidding. A case study is presented using data from the Iberian electricity market.
Resumo:
This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on electricity price and wind power is considered through a set of scenarios. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated production of thermal and wind energy generation, having as a goal the maximization of profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.
Resumo:
This paper presents a computer application for wind energy bidding in a day-ahead electricity market to better accommodate the variability of the energy source. The computer application is based in a stochastic linear mathematical programming problem. The goal is to obtain the optimal bidding strategy in order to maximize the revenue. Electricity prices and financial penalties for shortfall or surplus energy deliver are modeled. Finally, conclusions are drawn from an illustrative case study, using data from the day-ahead electricity market of the Iberian Peninsula.
Resumo:
Esta dissertação incide sobre o tema da coordenação entre sistemas eólicos e fotovoltaicos que participam no mercado de eletricidade. A incerteza da potência eólica e fotovoltaica é uma caraterística predominante nesta coordenação, devendo ser considerada no planeamento ótimo de sistemas eólico-fotovoltaicos. A fim de modelizar a incerteza é apresentada uma metodologia de otimização estocástica baseada em programação linear para maximizar o lucro esperado de uma empresa produtora de energia elétrica que participa no mercado diário. A coordenação entre sistemas eólicos e fotovoltaicos visa mitigar os desequilíbrios de energia, resultantes das ofertas horárias submetidas no mercado diário e, consequentemente, reduzir as penalizações financeiras. Os resultados da coordenação entre um sistema eólico e um sistema fotovoltaico são comparados com os resultados obtidos para a operação não coordenada. Estes resultados permitem concluir que a metodologia desenvolvida aplicada à coordenação apresenta um lucro esperado superior ao lucro obtido para a operação não coordenada; Abstract Stochastic Optimization Methodology for Wind-Photovoltaic Coordination This dissertation focuses on the issue of coordination between wind and photovoltaic systems participating in electricity markets. The uncertainty of wind and photovoltaic power is a main characteristic of these systems, which must be included in the optimal scheduling of the coordination of wind with photovoltaic systems. In order to model the uncertainty is presented a stochastic approach based on linear programming to maximize the profit of a wind photovoltaic power producer which participates in electricity markets. The coordination of wind with photovoltaic systems aims to mitigate the energy deviations, as a result of the participation in day-ahead market and therefore reducing economic penalties. The results obtained by the coordination are compared to results obtained by the separated operation of wind and photovoltaic systems. The results allow concluding that the proposed approach applied to the coordination presents an expected profit higher than the expected profit without coordination.
Resumo:
Neste trabalho é analisado o potencial eólico da região de Évora, tendo sido considerados quatro locais: Mitra, Portel, Reguengos e Colégio Verney. Com os dados de potência obtidos, foram escolhidas duas turbinas existentes no mercado, de potências nominais diferentes, para uma análise mais objectiva do real potencial da região. Apurou-se que, com a instalação de três turbinas menores, se obtém praticamente a mesma potência, por um preço consideravelmente inferior. Foi ainda possível verificar-se que a quantidade evitada de C02 para a atmosfera, ao considerar uma turbina de 5000 W (B) ou três 1000 W (A), é semelhante, concluindo-se que, considerando a eficiência, potencial, preço e emissões de co2 evitadas, a instalação de diversas turbinas A é a melhor opção. Este trabalho reveste-se de particular interesse considerando o facto de ser do conhecimento geral que, nas regiões costeiras e montanhosas, o potencial eólico está bastante estudado, ao passo que nas regiões interiores tal não acontece. ABSTRACT: ln this work, we assess the potential wind power in Évora, and four locations have been considered: Mitra, Portel, Reguengos and Évora. Based on the local wind power potential, two kinds of turbines were selected, for a more objective analysis of the region's useful wind power. It was found that the option for three small turbines allows the extraction of the same wind power that is extracted by the bigger turbine and at a considerably lower installation cost. lt was also found that the reduction in co2 emissions to the atmosphere, when considering the cases of one 5000 W (B) turbine and three 1000 W (A) turbines, is similar, therefore was concluded that, given the efficiency, potential, price and reduction of C02 emissions, the installation of several A turbines is the best option. This work is of particular interest because in coastal and mountain areas the wind potential is quite known, while this is not the case of inland areas.
Resumo:
A exigência energética global está mais orientada para a utilização das fontes de Energias Renováveis (FERs), comprometendo e garantindo um desenvolvimento sustentável. Este trabalho tem como objetivo contribuir para o atingir das metas do PED 2011-2030, no que refere à utilização das FER, em particular do potencial eólico em Timor-Leste. Timor-Leste tem apresentado um grande interesse na política de aproveitamento de FER para alcançar a meta de longo prazo de PED 2030, comprometendo-se com o desenvolvimento sustentável através de ERs. Este trabalho pretende contribuir em particular com o estudo do aproveitamento de energia eólica. Com base no clima do vento de longo termo entre 2004 – 2012, da estação meteorológica (EM) de Díli e conjugando estes com os dados da campanha experimental de Martifer cedidos, de Dezembro 2008 - Novembro 2009, obteve-se o coeficiente de variabilidade (Cvariab.) inter-anual. Foi assim possível construir o mapa médio do vento de longo termo, com modelo atmosférico de mesoscala, numa resolução refinada de 3×3 km. Para a identificação dos locais mais favoráveis do vento, foi utilizado o modelo ArcGIS para georreferenciação do recurso. A filtragem das restrições e os constrangimentos do terreno permitiu construir o mapa do vento sustentável de Timor-Leste, por distritos, subdistritos, sucos, do enclave de Oecússi e a ilha de Atauro, o que conduziu à hierarquização de cinco zonas favoráveis (zona 1 - 5). A contribuição para o plano energético de Timor-Leste consiste em duas fases: - a 1ª fase o aproveitamento eólico em três PEs nas zonas monitorizadas (3 e 5) oriundo de dados cedidos pela Martifer, contabilizou-se um total de 424.694 MWh de produção de energia anual, tendo-se verificado o custo normalizado de energia (LCOE) no valor médio calculado de 0,046 €/kWh; - na 2ª fase a construção de acesso e o desenvolvimento de PEs nas zonas 1, 2 e 4 para o Cenário de Max-Renovável. Assim sendo, viabilizam a "Perspetiva de Utilização da Energia Eólica" no quadro do PED 2011 - 2030 de Timor-Leste, que viria reduzir o custo de produção de energia atual, e a emissão de CO2; Abstract: Prospects of Using Wind Energy in Timor-Leste The demand for global energy is more focused on the use of Reneweable Energy sources (REs), ensuring and committing itself to sustainable development. This study was prompted by the wish to contribute to the achievement the goals of the Strategic Development Plan (PED 2011-2030) regarding the use of REs, particularly the wind energy in Timor-Leste. Timor-Leste has presented a great interest in the use of renewable energy sources policy to achieve the long term goal of the PED 2030, committing to a sustainable development through renewable energy. This thesis intends to contribute in particular with the study of the use of wind energy. Based on the long term wind climate between 2004 and 2012 of the Díli weather station and combining these data with the Martifer campaign experimental data of December 2008 - November 2009, the interannual variation coefficient (Cv) was obtained. Thus, it was possible to build the map of long term average wind with atmospheric mesoscale model in a refined resolution of 3×3 km. The ArcGIS model was used for the identification of the most favorable locations of the wind for its georeferencing. The constraining of filtering and the constraints of the terrain allowed to construe the sustainable wind map of Timor-Leste in distritos, subdistritos, sucos, and also of the enclave of Oecussi and Atauro island, which led to the ranking of five favorable areas (zone 1-5) for an immediate experimental campaign of wind characterization and utilization of this resource in wind parks. The contribution to Timor-Leste's energy plan consists of two phases: - the first phase of three wind farms in zone (3 and 5) from data provided by Martifer, a total of 424,694 MWh, and levelyzed cost of electricity (LCOE) in the calculated average value of 0.046 €/kWh; - in the second phase the construction of access and development of wind farms in zones 1, 2 and 4 for the Max-Renewable Scenario. As such, they make possible the "Perspective of Wind Energy Use" in Timor Leste’s PED 2011 - 2030, which would reduce current energy production costs and CO2 emissions.
Resumo:
This paper deals with the problem of coordinated trading of wind and photovoltaic systems in order to find the optimal bid to submit in a pool-based electricity market. The coordination of wind and photovoltaic systems presents uncertainties not only due to electricity market prices, but also with wind and photovoltaic power forecast. Electricity markets are characterized by financial penalties in case of deficit or excess of generation. So, the aim o this work is to reduce these financial penalties and maximize the expected profit of the power producer. The problem is formulated as a stochastic linear programming problem. The proposed approach is validated with real data of pool-based electricity market of Iberian Peninsula.
Resumo:
An integrated mathematical model for the simulation of an offshore wind system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using multiple point full-power clamped three-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a HVDC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the blades of the wind turbine, tower and generator due to the need to emulate the effects of the wind and the floating motion. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistors of the converter. Finally, a case study is presented to access the system performance.
Resumo:
The variability in non-dispatchable power generation raises important challenges to the integration of renewable energy sources into the electricity power grid. This paper provides the coordinated trading of wind and photovoltaic energy to mitigate risks due to the wind and solar power variability, electricity prices, and financial penalties arising out the generation shortfall and surplus. The problem of wind-photovoltaic coordinated trading is formulated as a linear programming problem. The goal is to obtain the optimal bidding strategy that maximizes the total profit. The wind-photovoltaic coordinated operation is modeled and compared with the uncoordinated operation. A comparison of the models and relevant conclusions are drawn from an illustrative case study of the Iberian day-ahead electricity market.
Resumo:
This paper presents an integrated model for an offshore wind turbine taking into consideration a contribution for the marine wave and wind speed with perturbations influences on the power quality of current injected into the electric grid. The paper deals with the simulation of one floating offshore wind turbine equipped with a permanent magnet synchronous generator, and a two-level converter connected to an onshore electric grid. The use of discrete mass modeling is accessed in order to reveal by computing the total harmonic distortion on how the perturbations of the captured energy are attenuated at the electric grid injection point. Two torque actions are considered for the three-mass modeling, the aerodynamic on the flexible part and on the rigid part of the blades. Also, a torque due to the influence of marine waves in deep water is considered. Proportional integral fractional-order control supports the control strategy. A comparison between the drive train models is presented.
Resumo:
This paper presents an integrated model for an offshore wind energy system taking into consideration a contribution for the marine wave and wind speed with perturbations influences on the power quality of current injected into the electric grid. The paper deals with the simulation of one floating offshore wind turbine equipped with a PMSG and a two-level converter connected to an onshore electric grid. The use of discrete mass modeling is accessed in order to reveal by computing the THD on how the perturbations of the captured energy are attenuated at the electric grid injection point. Two torque actions are considered for the three-mass modeling, the aerodynamic on the flexible part and on the rigid part of the blades. Also, a torque due to the influence of marine waves in deep water is considered. PI fractional-order control supports the control strategy. A comparison between the drive train models is presented.
Resumo:
The variability in non-dispatchable power generation raises important challenges to the integration of renewable energy sources into the electricity power grid. This paper provides the coordinated trading of wind and photovoltaic energy assisted by a cyber-physical system for supporting management decisions to mitigate risks due to the wind and solar power variability, electricity prices, and financial penalties arising out the generation shortfall and surplus. The problem of wind-photovoltaic coordinated trading is formulated as a stochastic linear programming problem. The goal is to obtain the optimal bidding strategy that maximizes the total profit. The wind-photovoltaic coordinated operation is modelled and compared with the uncoordinated operation. A comparison of the models and relevant conclusions are drawn from an illustrative case study of the Iberian day-ahead electricity market.
Resumo:
This paper is about a PhD thesis and includes the study and analysis of the performance of an onshore wind energy conversion system. First, mathematical models of a variable speed wind turbine with pitch control are studied, followed by the study of different controller types such as integer-order controllers, fractional-order controllers, fuzzy logic controllers, adaptive controllers and predictive controllers and the study of a supervisor based on finite state machines is also studied. The controllers are included in the lower level of a hierarchical structure composed by two levels whose objective is to control the electric output power around the rated power. The supervisor included at the higher level is based on finite state machines whose objective is to analyze the operational states according to the wind speed. The studied mathematical models are integrated into computer simulations for the wind energy conversion system and the obtained numerical results allow for the performance assessment of the system connected to the electric grid. The wind energy conversion system is composed by a variable speed wind turbine, a mechanical transmission system described by a two mass drive train, a gearbox, a doubly fed induction generator rotor and by a two level converter.