3 resultados para Water vapor permeability

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Knowledge of current conservation materials and methods together with those adopted in the past is essential to aid research and improve or develop better conservation options. The infill and painting of tile lacunae are subjected to special requirements mainly when used in outdoor settings. A selection of the most commonly used materials was undertaken and performed based on inquiries to practitioners working in the field. The infill pastes comprised organic (epoxy, polyester), inorganic (slaked lime,hydraulic lime and zinc hydroxychloride) and mixed organic–inorganic (slaked lime mixed with a vinylic resin)binders. The selected aggregates were those most commonly used or those already present in the commercially formulated products. The infill pastes were characterised by SEM, MIP, open porosity, water absorption by capillarity, water vapour permeability, thermal and hydric expansibilities and adhesion to the ceramic body. Their performance was assessed after curing, artificial ageing (salt ageing and UV–Temp–RH cycles) and natural ageing. The results were interpreted in terms of their significance as indicators of effectiveness, compatibility and durability

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water deficit is the most limiting factor for yield and fruit-quality parameters in papaya crop (Carica papaya L.), deficit-irrigation (DI) strategies offering a feasible alternative to manage limiting water resources. When DI is applied, it is crucial to assess the physiological status of the crop in order to maintain the plant within a threshold value of water stress so as no to affect yield or fruit-quality parameters. The aim of this work was to evaluate the feasibility of thermal imaging in young papaya plants to assess the physiological status of this crop when it is subjected to different DI regimes, studying the relationships between the changes in leaf temperature (Tleaf) and in the major physiological parameters (i.e., stomatal conductance to water vapor, gs; transpiration, E; and net photosynthesis, An). The trial was conducted in a greenhouse from March to April of 2012. Plants were grown in pots and subjected to four irrigation treatments: (1) a full irrigation treatment (control), maintained at field capacity; (2) a partial root-zone drying treatment, irrigated with 50% of the total water applied to control to only one side of roots, alternating the sides every 7 days; (3) a regulated deficit irrigation (50% of the control, applied to both sides of plant); (4) and a non-irrigated treatment, in which irrigation was withheld from both sides of the split root for 14 days, followed by full irrigation until the end of the study. Significant relationships were found between Tleaf and major physiological variables such as gs, E and An. Additionally, significant relationships were found between the difference of leaf-to-air temperature (ΔTleaf–air) and gas-exchange measurements, which were used to establish the optimum range of ΔTleaf–air as a preliminary step to the crop-water monitoring and irrigation scheduling in papaya, using thermal imaging as the main source of information. According to the results, we conclude that thermal imaging is a promising technique to monitor the physiological status of papaya during drought conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water deficit is the most limiting factor for yield and fruit-quality parameters in papaya crop (Carica papaya L.), deficit-irrigation (DI) strategies offering a feasible alternative to manage limiting water resources. When DI is applied, it is crucial to assess the physiological status of the crop in order to maintain the plant within a threshold value of water stress so as no to affect yield or fruit-quality parameters. The aim of this work was to evaluate the feasibility of thermal imaging in young papaya plants to assess the physiological status of this crop when it is subjected to different DI regimes, studying the relationships between the changes in leaf temperature (Tleaf) and in the major physiological parameters (i.e., stomatal conductance to water vapor, gs; transpiration, E; and net photosynthesis, An). The trial was conducted in a greenhouse from March to April of 2012. Plants were grown in pots and subjected to four irrigation treatments: (1) a full irrigation treatment (control), maintained at field capacity; (2) a partial root-zone drying treatment, irrigated with 50% of the total water applied to control to only one side of roots, alternating the sides every 7 days; (3) a regulated deficit irrigation (50% of the control, applied to both sides of plant); (4) and a non-irrigated treatment, in which irrigation was withheld from both sides of the split root for 14 days, followed by full irrigation until the end of the study. Significant relationships were found between Tleaf and major physiological variables such as gs, E and An. Additionally, significant relationships were found between the difference of leaf-to-air temperature (ΔTleaf–air) and gas-exchange measurements, which were used to establish the optimum range of ΔTleaf–air as a preliminary step to the crop-water monitoring and irrigation scheduling in papaya, using thermal imaging as the main source of information. According to the results, we conclude that thermal imaging is a promising technique to monitor the physiological status of papaya during drought conditions.