4 resultados para Visual control and estimation
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Aim: to evaluate the effects of a 12-weeks combined aerobic-resistance exercise therapy on fatigue and isokinetic muscle strength, glycemic control and health-related quality of life (HRQoL) in moderately affected type 2 diabetes (T2DM) patients. Methods: a randomized controlled trial design was employed. Forty-three T2DM patients were assigned to an exercise group (n = 22), performing 3 weekly sessions of 60 minutes of combined aerobic-resistance exercise for 12-weeks; or a no exercise control group (n = 21). Both groups were evaluated at a baseline and after 12-weeks of exercise therapy for: 1) muscle strength and fatigue by isokinetic dynamometry; 2) plasma glycated hemoglobin A1C (HbA1C); and 3) HRQoL utilizing the SF-36 questionnaire. Results: the exercise therapy led to improvements in muscle fatigue in knee extensors (-55%) and increased muscle strength in knee flexors and extensors (+15 to +30%), while HbA1C decreased (-18%). In addition, the exercising patients showed sizeable improvements in HRQoL: physical function (+53%), vitality (+21%) and mental health (+40%). Conclusion: 12-weeks of combined aerobic-resistance exercise was highly effective to improve muscle strength and fatigue, glycemic control and several aspects of HRQoL in T2DM patients. These data encourage the use of aerobic and resistance exercise in the good clinical care of T2DM.
Resumo:
A study was carried out over a two year period (2009/2010 and 2012/2013) on an experimental farm in the Alentejo region (Beja), in southern Portugal where rainfed malt barley (Hordeum distichum L.) is sown at the end of autumn or beginning of winter (November– December). The aim of this experiment was to study the efficiency of the herbicide iodosulfuron-methyl-sodium to control post-emergence broadleaved weeds in this cereal crop. The malt barley crop was established using no-till farming. This technology provides the necessary machine bearing capacity of the soil to assure the post-emergence application of herbicides at two diferente weed development stages. The herbicide iodosulfuron-methyl-sodium was applied at three doses (5.0, 7.5, and 10.0 g a. i. · ha–1) and at two different broadleaved weed development stages (3 to 4 and 6 to 7 pairs of leaves), that also corresponded to two diferente crop development stages (beginning of tillering and complete tillering). The results indicated that early herbicide application timing provided a significantly higher efficiency for all the applied herbicide doses, but this better weed control was not reflected in a higher crop grain yield. The lack of a higher crop grain yield was probably due to a crop phytotoxicity of the herbicide, when used at an early application timing.
Resumo:
Irrigation canals are complex hydraulic systems difficult to control. Many models and control strategies have already been developed using linear control theory. In the present study, a PI controller is developed and implemented in a brand new prototype canal and its features evaluated experimentally. The base model relies on the linearized Saint-Venant equations which is compared with a reservoir model to check its accuracy. This technique will prove its capability and versatility in tuning properly a controller for this kind of systems.
Resumo:
This paper is about a PhD thesis and includes the study and analysis of the performance of an onshore wind energy conversion system. First, mathematical models of a variable speed wind turbine with pitch control are studied, followed by the study of different controller types such as integer-order controllers, fractional-order controllers, fuzzy logic controllers, adaptive controllers and predictive controllers and the study of a supervisor based on finite state machines is also studied. The controllers are included in the lower level of a hierarchical structure composed by two levels whose objective is to control the electric output power around the rated power. The supervisor included at the higher level is based on finite state machines whose objective is to analyze the operational states according to the wind speed. The studied mathematical models are integrated into computer simulations for the wind energy conversion system and the obtained numerical results allow for the performance assessment of the system connected to the electric grid. The wind energy conversion system is composed by a variable speed wind turbine, a mechanical transmission system described by a two mass drive train, a gearbox, a doubly fed induction generator rotor and by a two level converter.