3 resultados para Videira - Fisiologia
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Neste trabalho testou-se o potencial antagonista de 16 fungos endofíticos isolados de videiras (Vitis vinifera L.), de castas representativas do Alentejo produzidas em modo de proteção integrada e em modo biológico, contra Guignardia bidwellii. Os isolados identificados após ITS-PCR e sequenciação pertencem aos géneros Epicoccum, Alternaria, Botrytis, Athelia, Phoma e Gibberella. Os isolados testados mostraram atividade antagonista contra G. bidwellii quer por inibição direta, quer através da produção de compostos voláteis, à exceção dos dois isolados de B. cinerea. No entanto, todos os isolados produziram alguns compostos voláteis com reconhecida atividade antimicrobiana, tais como benzaldeído, 3-metil-1-butanol e derivados de ácido propanoico. Foi ainda observado que seis dos isolados produziram também metabolitos não voláteis com capacidade de inibir o crescimento de G. bidwellii. Os resultados obtidos vêm mostrar o potencial dos fungos endofíticos como agentes de luta biológica no controlo de G. bidwellii, podendo constituir novas alternativas no âmbito de Proteção de Plantas; ABSTRACT: Endophytic fungi present in grapevines (Vitis vinifera L.) with the ability to inhibit the growth of the causal agent of black rot (Guignardia bidwellii) In this work the antagonistic potential of 16 endophytic grapevine fungi isolates (Vitis vinifera L.), from representative cultivars of the Alentejo region produced either under integrated pest management or organic mode, was tested against Guignardia bidwellii. Isolates were identified through ITS-PCR and sequencing, as belonging to the genera Epicoccum, Alternaria, Botrytis, Athelia, Phoma and Gibberella. Isolates showed antagonist activity against G. bidwellii either by direct inhibition or through the production of volatile compounds, with the exception of two isolates of B. cinerea. Nevertheless, all isolates produced volatile compounds with known antimicrobial activity such as benzaldehyde, 3-methyl-1-butanol and propionic acid derivatives. Additionally, six isolates produced non-volatile metabolites with the ability to inhibit G. bidwellii growth. These results show the potential that endophytic fungi have as agents for biological control of G. bidwellii, opening new options in the field of Plant Protection.
Resumo:
SHORT-TERM EFFECTS OF SALINITY ON SOME PHYSIOLOGICAL PARAMETERS OF YOUNG OLIVE TREES OF ARBEQUINA, COBRANÇOSA AND GALEGA VARIETIES Ana Elisa Rato1,4, Renato Coelho1, Margarida Vaz1, Teresa Carola2, Dália Barbosa2, Nádia Silva1, José dos Santos2, Lourenço Machado2, João Godinho2, Luzia Ruas2, Margarida Barradas2, Hernani Pereira2, Sara Porfírio4 1 ICAAM, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal 2 Master students, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal 3 Ph.D. student, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal 4 aerato@uevora.pt Due to the desertification in some regions, the interest in plant’s tolerance to salinity has been increasing, as this response is determining for plant survival in stress conditions. This work reports the investigation of tolerance to salt in two year-old olive trees (Olea europaea L.) of three varieties, Arbequina, Cobrançosa and Galega vulgar. Plants were grown in 10 L plastic pots containing approximately 9 Kg of a sandy granitic soil, on a greenhouse. For 3 months (from the beginning of February to the end of April 2012), they were subjected to three levels of salinity in the irrigation water, 0 mM, 80 mM and 200 mM NaCl (6 plants per salinity level in a total of 18 plants of each variety),. Stomatal conductance (gs) and relative leaf chlorophyll content were assessed on each plant in February, March and April. Mid-day leaf water potential () and soil salinity were measured at the end of the experiment (April). On average, concerning all treatments and dates of determination, stomatal conductance of Arbequina and Galega vulgar was quite similar, around 40 mmol m-2 s-1, but Cobrançosa had a value of gs 36% higher, almost 50% higher (61 mmol m-2 s-1) when compared with the controls (0 mM salt) of the other two varieties. In percentage of controls, there was little difference in gs between varieties and between salinities during February and March. In contrast, in April, after about 90 days of exposure to salt, there was a clear decrease in gs with salt irrigation, proportional to salt concentration. Compared with controls, plants irrigated with 200 mM salt showed around 80% (Arbequina) or 85% (Cobrançosa and Galega vulgar) decrease in gs. Chlorophyll content of leaves showed less than 5% difference between varieties on the average of all treatments and dates of determination. During the course of this experiment, the salinity levels used did not show any relevant effect on chlorophyll content. Overall, at the end of the experimental period (April), leaf water potential () at midday was significantly higher in Cobrançosa (-1,4 MPa) than in Galega vulgar (-1,7 MPa) or Arbequina (-1,8 MPa), and salt decreased of control plants (-1,25 MPa) by an average 30% (with 80 mM) and 65% (with 200 mM). At the end of the experiment, salinity in the soil irrigated with 0 mM, 80 mM or 200 mM NaCl was, on average of all varieties, 0,2 mS, 1,0 mS or 2,0 mS, respectively. Soil salinity was quite similar in Arbequina and Galega vulgar but about 35% lower in the pots of Cobrançosa, on average of all salt-irrigation levels. Plants of Cobrançosa had higher stomatal conductance, however they showed higher water potential and lower salinity in the soil. These apparently contradictory results seem to suggest that Cobrançosa responds to salt differently from the other two varieties. This issue needs further investigation.
Resumo:
Transpiration of two year-old olive trees of three different varieties, Arbequina, Cobrançosa and Galega (18 trees per variety), irrigated with three levels of salt (0, 80 or 200 mM NaCl) for about 90 days, was measured by a gravimetric method. To determine leaf area, each tree was photographed from the side against a white background and the total area of each projected image was determined with ImageJ software. To calibrate these area determinations, one tree of each variety was subsequently stripped of all its leaves and its total leaf area was accurately measured. A correlation was then obtained between the area on the photograph of this particular tree and the total area of the detached leaves of the same tree. Using the leaf area determined by this procedure, transpiration rates of the trees could be calculated. Knowing leaf and air temperatures and RH, it was possible to determine the difference in molar fraction of water between the leaf and the air. Using this and the values of the transpiration rate, stomatal conductance could be calculated (gs calc) and compared with the conductance measured on the same trees with a porometer (gs). Actual leaf area of a plant was 1,40 (Arbequina), 1,42 (Cobrançosa) or 1,24 (Galega) times the area measured with ImageJ on the photograph of the same plant. Leaf area of the trees, on average of all salt irrigations, was significantly higher on Arbequina (0,187 m2) then on the other two varieties (0,138 m2 or 0,148 m2, for Cobrançosa or Galega, respectively), but did not differ significantly in percentage of controls (0 salt). On average of all three varieties, leaf area was also higher on plants irrigated without salt (0,181 m2) than on plants exposed to 80 or 200 mM NaCl (0,152 m2 or 0,140 m2, respectively), which did not differ between them. The same significant difference was observed when leaf area was expressed as percentage of controls. Transpiration rate was significantly higher on Cobrançosa (1,17 mmol m-2 s-1), on average of all treatments, but there were no significant differences between Arbequina (1,08 mmol m-2 s-1) and Galega (0,82 mmol m-2 s-1). In percentage of controls, there were no significant differences between varieties. Salt reduced significantly the transpiration rate in all varieties, both the actual and percentual values, to about 50% or 30% of controls when exposed to 80 mM or 200 mM NaCl, respectively. Stomatal conductance (gs), assessed by porometry, was significantly higher in control plants, mainly in Cobrançosa (102 mmol m-2 s-1), then in Arbequina (77 mmol m-2 s-1) and the lower values were found in Galega (51 mmol m-2 s-1). Salt reduced gs, on average of the three varieties to 30% or 10% of controls on exposure to 80 mM or 200 mM NaCl, respectively. Calculated (gs calc) and measured (gs) values of stomatal conductance showed a close relation between them (0,967, R2 = 0,837) which indicates this non-destructive method to determine whole-plant leaf area to be reasonably accurate.