6 resultados para Vector-borne disease

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Authors describe first-hand experiences carried out within the framework of selected International projects aimed at developing collaborative research and education using the One Health (OH) approach. Special emphasis is given to SAPUVETNET, a series of projects co-financed under the EU-ALFA program, and aimed to support an International network on Veterinary Public Health (VPH) formed by Veterinary Faculties from Latin-America (LA) and Europe (EU). SAPUVETNET has envisaged a series of objectives/activities aimed at promoting and enhancing VPH research/training and intersectoral collaboration across LA and EU using the OH approach, as well as participating in research and/or education projects/networks under the OH umbrella, namely EURNEGVEC-European Network for Neglected Vectors & Vector-Borne Infections, CYSTINET-European Network on Taeniosis/Cysticercosis, and NEOH-Network for Evaluation of One Health; the latter includes expertise in multiple disciplines (e.g. ecology, economics, human and animal health, epidemiology, social and environmental sciences, etc.) and has the primary purpose of enabling quantitative evaluation of OH initiatives by developing a standardized evaluation protocol. The Authors give also an account of the ongoing creation of OHIN-OH International Network, founded as a spin-off result of SAPUVETNET. Finally, some examples of cooperation development projects characterised by an OH approach are also briefly mentioned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1999, the pinewood nematode (PWN) , Bursaphelenchus xylophilus was found and identified for the first time in Portugal and in Europe. Following detection, Portuguese authorities initiated the implementation of eradication measures during 1999 and 2000, following an alert provided to European Community officials; as a result, the nematode was confirmed to be confined in the Setúbal region, near Lisbon. A task force from the follow-up group (GANP) created by the Secretary of State for the Rural Development established a national eradication programme (PROLUNP) to (1) Contain PWN within the initial geographic limits; (2) Implement eradication measures; and (3) Monitor PWN at a national level. Research is presently being conducted both at universities as well as research institutes, focusing on the characterization ofBursaphelenchus species associated with maritime pine, as well as on the insect vector, Monochamus galloprovincialis. Recent reports indicate that the nematode may be present in Siberia (Russia), which would present a threat to Eastern European forestry. Efforts are presently being developed by several European countries to establish a research consortium to detect and study the possible presence of PWN, for a new PRAs. A recent workshop held in Portugal, in 2001, has been an oportunity for sharing experiences and techniques on detection and control. There is clearly a greater awareness of this issue in Europe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pinewood nematode (PWN), Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD), is a serious pest and pathogen of forest tree species, in particular among the genus Pinus. It was first reported from Japan in the beginning of the XXth century, where it became the major ecological catastrophe of pine forests, with losses reaching over 2 million m3/ year in the 1980s. It has since then spread to other Asian countries such as China, Taiwan and Korea, causing serious losses and economic damage. In 1999, the PWN was first detected in the European Union (EU), in Portugal, and immmediately prompted several government (national and EU) actions to assess the extent of the nematode’s presence, and to contain B. xylophilus and its insect vector (Monochamus galloprovincialis) to an area with a 30km radius in the Setúbal Peninsula, 20 km south of Lisbon. International wood trade, with its political as well as economic ramifications, has been seriously jeopardized. The origin of the population of PWN found in Portugal remains elusive. Several hypotheses may be considered regarding pathway analysis, basically from two general origins: North America or the Far East (Japan or China). World trade of wood products such as timber, wooden crates, palettes, etc… play an important role in the potential dissemination of the pinewood nematode. In fact, human activities involving the movement of wood products may be considered the single most important factor in spreading of the PWN. Despite the dedicated and concerted actions of government agencies, this disease continues to spread. Very recently (2006), in Portugal, forestry and phytosanitary authorities (DGRF and DGPC) have announced a new strategy for the control and ultimately the erradication of the nematode, under the coordination of the national program for the control of the pinewood nematode (PROLUNP). Research regarding the bioecology of the nematode and insect as well as new detection methods, e.g., involving real-time PCR, has progressed since 1999. International agreements (GATT, WTO) and sharing of scientific information is of paramount importance to effectively control the nematode and its vector, and thus protect our forest ecosystems and forest economy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pine wilt disease (PWD) is perhaps the most serious threat to pine forests worldwide. Since it´s discovery in the early XXth century by Japanese forest researchers, and the relationship with its causative agent, the pinewood nematode (PWN) Bursaphelenchus xylophilus, in the 1970s, PWD has wreaked havoc wherever it appears. Firstly in the Far East (Japan, China and Korea) and now, more recently in 1999, in the EU (Portugal). The forest sector in Portugal plays a major role in the Portuguese economy with a 12% contribution to the industrial gross domestic product, 3.2% of the gross domestic product, 10% of foreign trade and 5% of national employment. Maritime pine (Pinus pinaster) is one of the most important pine productions, and industrial activity, such as the production of wood and resin, as well as coastal protection associated with sand dunes. Also, stone pine (Pinus pinea) plays an important role in the economy with a share derived from the exports of high-quality pineon seed. Thus, the tremendous economical and ecological impact of the introduction of a pest and pathogen such as the PWN, although as far as is known, the only species susceptible to the nematode is maritime pine. Immediately following detection, the research team involved (Univ. Évora, INIAP) informed the national plant quarantine and forest authorities, which relayed the information to Brussels and the appropriate EU authorities. A task force (GANP), followed by a national program (PROLUNP) was established. Since then, national surveys have been taking place, involving MADRP (Ministry of Agriculture), the University of Évora and several private corporations (e.g. UNAC). Forest growers in the area are particularly interested and involved since the area owned by the growers organizations totals 700 000 ha, largely affected by PWD. Detection of the disease has led to serious consequences and restrictions regarding exploration and commercialization of wood. A precautionary phytosanitary strip, 3 km-wide, has been recently (2007) established surrounding the affected area. The Portuguese government, through its national program PROLUNP, has been deeply involved since 1999, and in conjunction with the EU (Permanent Phytosanitary Committee, and FVO) and committed to controlling this nematode and the potential spread to the rest of the country and to the rest of the EU. The global impact of the presence of Bursaphelenchus xylophilus or the threat of its introduction and the resulting pine wilt disease in forested areas in different parts of the world is of increasing concern economically. The concern is exacerbated by the prevailing debate on climate change and the putative impact this could have on the vulnerability of the world’s pine forests to this disease. The scientific and regulatory approach taken in different jurisdictions to the threat of pine wilt disease varies from country to country depending on the perceived vulnerability of their pine forests to the disease and/or to the economic cost due to lost trade in wood products. Much of the research surrounding pine wilt disease has been located in the northern hemisphere, especially in southern Europe and in the warmer, coastal, Asian countries. However, there is an increased focus on this problem also in those countries in the southern hemisphere where plantations of susceptible pine have been established over the years. The forestry sector in Australia and New Zealand are on “high alert” for this disease and are practicing strict quarantine procedures at all ports of entry for wood products. As well, there is heightened awareness, as there is worldwide, for the need to monitor wood packaging materials for all imported goods. In carrying out the necessary monitoring and assessment of products for B. xylophilus and its vectors substantial costs are incurred especially when decisions have to be made rapidly and regardless of whether the outcome is positive or negative. Australia’s response recently to the appearance of some dying pines in a plantation illustrated the high sensitivity of some countries to this disease. Some $200,000 was spent on the assessment in order to save a potential loss of millions of dollars to the disease. This rapid, co-ordinated response to the report was for naught, because once identified it was found not to be B. xylophilus. This illustrates the particular importance of taking the responsibility at all levels of management to secure the site and the need of a rapid, reliable diagnostic method for small nematode samples for use in the field. Australia is particularly concerned about the vulnerability of its 1million hectares of planted forests, 80% of which are Pinus species, to attack from incursions of one or more species of the insect vector. Monochamus alternatus incursions in wood pallets have been reported from Brisbane, Queensland. The climate of this part of Australia is such that the Pinus plantations are particularly vulnerable to the potential outcome of such incursions, and the state of Queensland is developing a risk management strategy and a proactive breeding programme in response to this putative threat. New Zealand has 1.6 million hectares of planted forests and 89% of the commercial forest is Pinus radiata. Although the climate where these forests are located tends to be somewhat cooler than that in Australia the potential for establishment and development of the disease in that country is believed to be high. The passage alone of 200,000 m³/year of wood packaging through New Zealand ports is itself sufficient to require response. The potential incursion of insect vectors of pinewood nematode through the port system is regarded as high and is monitored carefully. The enormous expansion of global trade and the continued use of unprocessed/inadequately-processed wood for packaging purposes is a challenge for all trading nations as such wood packaging material often harbours disease or pest species. The extent of this problem is readily illustrated by the expanding economies and exports of countries in south-east Asia. China. Japan and Korea have significant areas of forestland infested with B. xylophilus. These countries too are among the largest exporting countries of manufactured goods. Despite the attempts of authorities to ensure that only properly treated wood is used in the crating and packaging of goods B. xylophilus and/or its insect vector infested materials is being recorded at ports worldwide. This reminds us, therefore, of the ease with which this nematode pest can gain access to forest lands in new geographic locations through inappropriate use, treatment or monitoring of wood products. It especially highlights the necessity to find an alternative to using low-grade lumber for packaging purposes. Lest we should believe that all wood products are always carriers of B. xylophilus and its vectors, it should be remembered that international trade of all kinds has occurred for thousands of years and that lumber-born pests and diseases do not have worldwide distribution. Other physico-biological factors have a significant role in the occurrence, establishment and sustainability of a disease. The question is often raised as to why the whole of southern Europe doesn’t already have B. xylophilus and pine wilt disease. European countries have traded with countries that are infested with B. xylophilus for hundreds of years. Turkey is an example of a country that appears to be highly vulnerable to pine wilt disease due to its extensive forests in the warm, southern region where the vector, Monochamus galloprovincialis, occurs. However, there is no record of the presence of B. xylophilus occurring there despite the importation of substantial quantities of wood from several countries In many respects, Portugal illustrates both the challenge and the dilemma. In recent times B. xylophilus was discovered there in the warm coastal region. The research, administrative and quarantine authorities responded rapidly and B. xylophilus appears to have been confined to the region in which it was found. The rapid response would seem to have “saved the day” for Portugal. Nevertheless, it raises again the long-standing questions, how long had B. xylophilus been in Portugal before it was found? If Lisbon was the port of entry, which seems very likely, why had B. xylophilus not entered Lisbon many years earlier and established populations and the pine wilt disease? Will the infestation in Portugal be sustainable and will it spread or will it die out within a few years? We still do not have sufficient understanding of the biology of this pest to know the answers to these questions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pinewood nematode, is the causal agent of pine wilt disease, a serious threat to native pine forest in eastern Asia (Japan, Korea, China and Taiwan) and some parts of North America (USA, Canada and Mexico). In 1999, this nematode was found and identified for the first time in Portugal and in Europe. The detection of this quarantine pest in Portugal has indicated the need to know more about the distribution of Bursaphelenchus spp. in coniferous trees in Europe in order to describe the geographic range of the species and to act quickly in case of the nematode’s unwanted introduction into other European regions. Pine forest has a wide distribution in Turkey that increases the number of susceptible host trees for pinewood nematode. Because of these resaons, some regions of Turkey were surveyed for the presence of the nematode. Three different species of Bursaphelenchus were found. However, B. xylophilus was not detected. The detection of B. mucronatus, very similar to B. xylophilus biologically and morphologically, is very important. The presence of this species indicates that B. xylophilus could spread easly in conifer forests of Turkey. A study was conducted to determine the pathogenicity of B. mucronatus and 80% of seedlings of P. sylvestris were wilted. Biological characteristics of M. galloprovincialis were compared with M. carolinensis, Nort American vector, and some of them were found to be similar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pine wilt disease (PWD) is one of the most damaging events affecting conifer forests (in particular Pinus spp.), in the Far East (Japan, China and Korea), North America (USA and Canada) and, more recently, in the European Union (Portugal). In Japan it became catastrophic, damaging native pine species (Pinus thunbergii and P. densiflora), and becoming the main forest problem, forcing some areas to be totally replaced by other tree species. The pine wilt nematode (PWN) Bursaphelenchus xylophilus, endemic, with minor damage, to North America, was introduced in Japan in the early XX century and then spread to Asia (China and Korea) in the 1980s. In 1999 it was detected for the first time in Portugal, where, due to timely detection and immediate government action, it was initially (1999-2008) contained to a small area 30 km SE of Lisbon. In 2008, the PWN spread again to central Portugal, the entire country now being classified as “affected area”. Being an A1 quarantine pest, the EU acted to avoid further PWN spreading and to eradicate it, by actions including financial support for surveyes and eradication, annual inspections and research programs. Experience from control actions in Japan included aerial spraying of insecticides to control the insect vector (the Cerambycid beetle Monochamus alternatus), injection of nematicides to the trunk of infected trees, slashing and burning of large areas out of control, beetle traps, biological control and tree breeding programs. These actions allowed some positive results, but also unsuccessful cases due to the PWN spread and virulence. Other Asian countries also followed similar strategies, but the nematode is still spreading in many regions. In Portugal, despite lower damage than Asia, PWD is still significant with high losses to the forestry industry. New ways of containing PWD include preventing movement of contaminated wood, cutting symptomatic trees and monitoring. Despite a national and EU legislative body, no successful strategy to control and eventually eradicate the nematode and the disease will prevail without sound scientific studies regarding the nematode and vector(s) bioecology and genetics, the ecology and ecophysiology of the pine tree species, P. pinaster and P. pinea , as well as the genomics and proteomics of pathogenicity (resistance/ susceptibility).