5 resultados para Use and land occupation

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The red-legged partridge is a small game species widely hunted in southern Spain. Its commercial use has important socioeconomic effects in rural areas where other agrarian uses are of marginal importance. The aims of the present work were to identify areas in Andalusia (southern Spain) where game yields for the red-legged partridge reach high values and to establish the environmental and land use factors that determine them. We analysed 32,134 annual hunting reports (HRs) produced by 6,049 game estates during the hunting seasons 1993/1994 to 2001/2002 to estimate the average hunting yields of red-legged partridge in each Andalusian municipality (n=771). We modelled the favourability for obtaining good hunting yields using stepwise logistic regression on a set of climatic, topographical, land use and vegetation variables that were available as digital coverages or tabular data applied to municipalities. Good hunting yields occur mainly in plain areas located in the Guadalquivir valley, at the bottom of Betic Range and in the Betic depressions. Favourable areas are related to highly mechanised, lowelevation areas mainly dedicated to intensive dry crops. The most favourable areas predicted by our model are mainly located in the Guadalquivir valley.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study deals with the development of systematic conservation planning as management instrument in small oceanic islands, ensuring open systems of governance, and able to integrate an informed and involved participation of the stakeholders. Marxan software was used to define management areas according a set of alternative land use scenarios considering different conservation and management paradigms. Modeled conservation zones were interpreted and compared with the existing protected areas allowing more fused information for future trade-outs and stakeholder's involvement. The results, allowing the identification of Target Management Units (TMU) based on the consideration of different development scenarios proved to be consistent with a feasible development of evaluation approaches able to support sound governance systems. Moreover, the detailed geographic identification of TMU seems to be able to support participated policies towards a more sustainable management of the entire island

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The supply side of the food security engine is the way we farm. The current engine of conventional tillage farming is faltering and needs to be replaced. This presentation will address supply side issues of agriculture to meet future agricultural demands for food and industry using the alternate no-till Conservation Agriculture (CA) paradigm (involving no-till farming with mulch soil cover and diversified cropping) that is able to raise productivity sustainably and efficiently, reduce inputs, regenerate degraded land, minimise soil erosion, and harness the flow of ecosystem services. CA is an ecosystems approach to farming capable of enhancing not only the economic and environmental performance of crop production and land management, but also promotes a mindset change for producing ‘more from less’, the key attitude towards sustainable production intensification. CA is now spreading globally in all continents at an annual rate of 10 Mha and covers some 157 Mha of cropland. Today global agriculture produces enough food to feed three times the current population of 7.21 billion. In 1976, when the world population was 4.15 billion, world food production far exceeded the amount necessary to feed that population. However, our urban and industrialised lifestyle leads to wastage of food of some 30%-40%, as well as waste of enormous amount of energy and protein while transforming crop-based food into animal-derived food; we have a higher proportion of people than ever before who are obese; we continue to degrade our ecosystems including much of our agricultural land of which some 400 Mha is reported to be abandoned due to severe soil and land degradation; and yields of staple cereals appear to have stagnated. These are signs of unsustainability at the structural level in the society, and it is at the structural level, for both supply side and demand side, that we need transformed mind sets about production, consumption and distribution. CA not only provides the possibility of increased crop yields for the low input smallholder farmer, it also provides a pro-poor rural and agricultural development model to support agricultural intensification in an affordable manner. For the high output farmer, it offers greater efficiency (productivity) and profit, resilience and stewardship. For farming anywhere, it addresses the root causes of agricultural land degradation, sub-optimal ecological crop and land potentials or yield ceilings, and poor crop phenotypic expressions or yield gaps. As national economies expand and diversify, more people become integrated into the economy and are able to access food. However, for those whose livelihoods continue to depend on agriculture to feed themselves and the rest of the world population, the challenge is for agriculture to produce the needed food and raw material for industry with minimum harm to the environment and the society, and to produce it with maximum efficiency and resilience against abiotic and biotic stresses, including those arising from climate change. There is growing empirical and scientific evidence worldwide that the future global supplies of food and agricultural raw materials can be assured sustainably at much lower environmental and economic cost by shifting away from conventional tillage-based food and agriculture systems to no-till CA-based food and agriculture systems. To achieve this goal will require effective national and global policy and institutional support (including research and education).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Olive tree sap flow measurements were collected in an intensive orchard near Évora, Portugal, during the irrigation seasons of 2013 and 2014, to calculate daily tree transpiration rates (T_SF). Meteorological variables were also collected to calculate reference evapotranspiration (ETo). Both data were used to assess values of basal crop coefficient (Kcb) for the period of the sap flow observations. The soil water balance model SIMDualKc was calibrated with soil, biophysical ground data and sap flow measurements collected in 2013. Validated in 2014 with collected sap flow observations, the model was used to provide estimates of dual e single crop coefficients for 2014 crop growing season. Good agreement between model simulated daily transpiration rates and those obtained with sapflow measurements was observed for 2014 (R2=0.76, RMSE=0.20 mm d-1), the year of validation, with an estimation average absolute error (AAE) of 0.20 mm d-1. Olive modeled daily actual evapotranspiration resulted in atual ETc values of 0.87, 2.05 and 0.77 mm d-1 for 2014 initial, mid- and end-season, respectively. Actual crop coefficient (Kc act) values of 0.51, 0.43 and 0.67 were also obtained for the same periods, respectively. Higher Kc values during spring (initial stage) and autumn (end-stage) were published in FAO56, varying between 0.65 for Kc ini and 0.70 for Kc end. The lower Kc mid value of 0.43 obtained for the summer (mid-season) is also inconsistent with the FAO56 expected Kc mid value of 0.70 for the period. The modeled Kc results are more consistent with the ones published by Allen & Pereira [1] for olive orchards with effective ground cover of 0.25 to 0.5, which vary between 0.40 and 0.80 for Kc ini, 0.40–0.60 for Kc mid with no active ground cover, and 0.35–0.75 for Kc end, depending on ground cover. The SIMDualKc simulation model proved to be appropriate for obtaining evapotranspiration and crop coefficient values for our intensive olive orchard in southern Portugal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biophysical and meteorological variables as well as radiometric canopy temperatures were collected in an intensive orchard near Évora, Portugal, with 28% ground cover by canopy and combined in a simplified two-source energy balance model (STSEB) to independently calculate the olive tree transpiration (T_STSEB) component of the total evapotranspiration (ETc). Sap flow observations were simultaneously taken in the same orchard allowing also for independent calculations of tree transpiration (T_SF). Model water use results were compared with water use estimates from the sap flow measurements. Good agreement was observed (R2=0.86, RMSE=0.20 mm d-1), with an estimation average absolute error (AAE) of 0.17 mm d-1. From June to August, on average olive water use were 1.92 and 1.89 mm d-1 for sap flow and STSEB model respectively, and 1.38 and 1.58 mm d-1 for the month of September. Results were also used to assess the olive basal crop coefficients (Kcb). Kcb estimates of 0.33 were obtained for sap flow and STSEB model, respectively, for June to August, and of 0.44 and 0.53 for the month of September. Basal crop coefficients were lower than the suggested FAO56 average Kcb values of 0.65 for June to August, the crop mid-season growth stage, and of 0.65 for the month of September, the end-season.