2 resultados para Trophic guild
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Changes in fish assemblage structure caused by human activities, such as fishing, can alter trophic relations in fish assemblages. In this context, Marine Protected Areas (MPA) are efficient tools for habitat recovery and ideal environments for evaluating changes on the trophic structure resulting from human activities. The present work targeted fish assemblages from two no-take MPAs from the northern half of South Alentejo and Costa Vicentina Marine Park, established in 2011. Previous works reported positive effects on local fish assemblages after no-take MPA designation, and it is therefore important to further study its impact on local fish assemblages, especially concerning trophic interactions. Local fish assemblages were sampled (summer 2011, winter 2012, summer 2013 and winter 2013) using trammel nets. Diets were characterized and digestive tract contents of the 10 most abundant fish species were compared between the no take MPAs (treatment) and adjacent areas (controls), and changes evaluated as a function of time since protection. Results revealed significant differences between the diets of fish from protected and non protected areas, with crabs being the preferential prey in both protected and control areas but being more ingested outside the no-take areas. However, these differences were evident since the beginning of the study. Fish assemblages from the northern area presented significantly larger niche breadth and significantly increasing with time. This way, the main effects of no-take MPA implementation were directly visible on the niche breadth but did not directly impact the diet composition of the sampled fish assemblages, contributing however to reinforce the already naturally existent differences. This work provides important information regarding the effect of changes in the fish assemblage caused by MPA designation on the trophic ecology of fish.
Resumo:
INTRODUCTION AND GOALS: Genus Bursaphelenchus includes several pests of the world importance for the rural economy, the most dangerous are the Bursaphelenchus xylophilus (the pinewood nematode caused decline of the pine trees in south Asia and in one spot area in Europe, Portugal, Peninsula de Setubal) and the Bursaphelenchus cocophilus, causing the decline of coco-palm plantations in Carribean and Latin American regions. The peculiarity of the host-parasite association of the genus that the nematode life cycle includes three trophic components: plant (mostly a tree), insect vector and a fungus. Goals of the presentation is to list all species of the world fauna and all efficient diagnostic characters, then create the identification tool and analyze the similarity of species and possible ways and causes of the host-parasite evolution of the group. RESULTS: Complete list of species with synonymy and a catalogue of all efficient diagnostic characters with their states, selected from papers of the most experienced taxonomists of the genus, are given for the genus Bursaphelenchus. List of known records of Bursaphelenchus species with names of natural vectors and plants and their families is given (for world pests the most important groups of trees and insects are listed). The tabular, traditional and computer-aided keys are presented. Dendrograms of species relationships (UPGMA, standard distance: mean character difference) based on all efficient taxonomic characters and separately on the spicule characters only, are given. Discussion whether the species groups are natural or purely diagnostic ones is based on the relationships dendrograms and the vector and associated plant ranges of Bursaphelenchus species; the xylophilus species group (B. xylophilus, B. abruptus, B. baujardi, B. conicaudatus, B. eroshenkii, B. fraudulentus, B. kolymensis, B. luxuriosae; B. mucronatus), the hunti group (B. hunti, B. seani, B. kevini and B. fungivorus) are probably the natural ones. CONCLUSIONS: The parasitic nematode association includes three trophic components: plant, insect vector and fungus. The initial insect-plant complex Scolytidae-Pinaceae is changeable and only in rare occasions the change of the preferred vector to Cerambycidae (the xylophilus group), Hymenoptera (the hunti group) led to formation of the natural species-groups. From the analysis it is clear that although the vector range is changeable it is comparatively more important for the evolution of the genus Bursaphelenchus than associations with plants at the family level. Data on the fungi species (3rd component in natural Bursaphelenchus associations) are insufficient for the detailed comparative analysis.