2 resultados para Tracking control

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity of oxidative enzymes and the levels of free auxins were determined during adventitious root formation in olive explants. Rooting trials were performed both with in vitro-cultured micro shoots of the cultivar ‘Galega Vulgar’, treated with indole-3-butyric acid (IBA) and with salicylhydroxamic acid(SHAM) + IBA, as well as with semi-hardwood cuttings of the cultivars ‘Galega Vulgar’ (difficult-to-root)and ‘Cobrançosa’ (easy-to-root), treated with IBA. The auxin (IBA) was used in all experiments as a rooting promoter, while SHAM was used in micropropagation trials as rooting inhibitor, providing a negative control. Free indole-3-acetic acid (IAA) and IBA concentrations were determined in microshoots, as well as in semi-hardwood cuttings, throughout the rooting period at pre-established time-points. At the sametime-points, the enzymatic activity of polyphenol oxidases (PPO), peroxidases (POX), and IAA oxidase(IAAox) was evaluated in the microshoots. Microshoots treated with SHAM + IBA revealed higher POX and IAAox activity, as well as lower PPO activity, than those treated only with IBA. IAA levels were higher in IBA-treated microshoots during induction phase, but lower during early initiation phase. Incontrast, free IBA levels were higher in microshoots treated with SHAM + IBA during induction, but lower during initiation. A similar pattern of free auxin levels was observed in semi-hardwood cuttings of the two contrasting cultivars under evaluation. The similarities found on the auxin patterns of microshoots treated with SHAM and those of semi-hardwood cuttings of the difficult-to-root olive cultivar allow considering SHAM a reliable control for when simulation of a difficult-to-root behavior is necessary. The inhibitory effect of SHAM in root formation could be related with 1) the inhibition of alternative oxidase(AOX), leading to a down regulation of phenylpropanoid biosynthetic pathways, which would decrease the concentration of phenolic substrates for PPO; 2) an increase in IAAox activity resulting in lower free IAA levels or; 3) a defective conversion of IBA into IAA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the phase control for Neurospora circadian rhythm. The nonlinear control, given by tuning the parameters (considered as controlled variables) in Neurospora dynamical model, allows the circadian rhythms tracking a reference one. When there are many parameters (e.g. 3 parameters in this paper) and their values are unknown, the adaptive control law reveals its weakness since the parameters converging and control objective must be guaranteed at the same time. We show that this problem can be solved using the genetic algorithm for parameters estimation. Once the unknown parameters are known, the phase control is performed by chaos synchronization technique.