2 resultados para Three-point bending

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current pear pruning making use of pneumatic shears still is a very labour intensive operation. The Proder project “Avaliação da poda mecânica em pomares de pera” was designed to contribute to solutions that would reduce the present dependence in labour and therefore to promote a reduction in pruning costs. This paper shows the results of a trial made to evaluate the influence of mechanical topping in manual pruning complement field work and pear yield. Topping was performed using a Reynolds 6DT 3.0m cutting bar with six hydraulic-driven circular disc-saws mounted in the three point tractor linkage system. The field trial was performed in a commercial orchard with 20 years, planted in an array of 4m x 2m with tree lines oriented in North-South direction. Trees were trained as the central leader system. In this trial, in a randomised complete block design with four replications, two treatments are being compared leading to 8 plots with one line of 14 trees per plot. The treatments tests were: T1 - manual pruning performed by workers using pneumatic shears, in each year; T2 - Topping the canopy parallel to the ground, using a discs-saw pruning machine mounted in a front loader of an agricultural tractor, followed by manual pruning complement performed by workers with pneumatic shears. Tree height and width was measured, before and after pruning. Work was timed and pear yields evaluated. Mechanical topping seems to be effective in the control of tree height, which can contribute to increase 14% of work rates on manual pruning complement. No significant differences in pear yield were found between treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An integrated mathematical model for the simulation of an offshore wind system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using multiple point full-power clamped three-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a HVDC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the blades of the wind turbine, tower and generator due to the need to emulate the effects of the wind and the floating motion. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistors of the converter. Finally, a case study is presented to access the system performance.