4 resultados para TENSOR
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
In the traceless Oldroyd viscoelastic model, the viscoelastic extra stress tensor is decomposed into its traceless (deviatoric) and spherical parts, leading to a reformulation of the classical Oldroyd model. The equivalence of the two models is established comparing model predictions for simple test cases. The new model is validated using several 2D benchmark problems. The structure and behavior of the new model are discussed and the future use of the new model in envisioned, both on the theoretical and numerical perspectives.
Resumo:
Using Macaulay's correspondence we study the family of Artinian Gorenstein local algebras with fixed symmetric Hilbert function decomposition. As an application we give a new lower bound for the dimension of cactus varieties of the third Veronese embedding. We discuss the case of cubic surfaces, where interesting phenomena occur.
Resumo:
A traceless variant of the Johnson-Segalman viscoelastic model is presented. The viscoelastic extra stress tensor is de composed into its traceless (deviatoric) and spherical parts, leading to a reformulation of the classical Johnson-Segalman model. The equivalente of the two models is established comparing model predictions for simple test cases. The new model is validated using several 2D benchmark problems.The structure and behavior of the new model are discussed.
Resumo:
The Covariant Spectator Theory (CST) is used to calculate the mass spectrum and vertex functions of heavy–light and heavy mesons in Minkowski space. The covariant kernel contains Lorentz scalar, pseudoscalar, and vector contributions. The numerical calculations are performed in momentum space, where special care is taken to treat the strong singularities present in the confining kernel. The observed meson spectrum is very well reproduced after fitting a small number of model parameters. Remarkably, a fit to a few pseudoscalar meson states only, which are insensitive to spin–orbit and tensor forces and do not allow to separate the spin–spin from the central interaction, leads to essentially the same model parameters as a more general fit. This demonstrates that the covariance of the chosen interaction kernel is responsible for the very accurate prediction of the spin-dependent quark–antiquark interactions.