3 resultados para TENSILE DEFORMATION

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Late Variscan deformation event in Iberia, is characterized by an intraplate deformation regime induced by the oblique collision between Laurentia and Gondwan. This episode in Iberia is characterized by NNE-SSW strike-slip faults, which are considered by the classic works as sinistral strike-slips. However, the absence of Mesozoic formations constraining the age of this sinistral kinematics, led some authors to consider it as the result of Alpine reworking. Structural studies in Almograve and Ponta Ruiva sectors (SW Portugal), not only shows that NNE-SSW faults presents a clear sinistral kinematics and are occasionally associated with E-W dextral shears, but also that this kinematics is related to the late deformation episodes of Variscan Orogeny. In Almograve sector, the late Variscan structures are characterized by NNE-SSW sinistral kink-bands, spatially associated with E-W dextral faults. These structures are contemporaneous and affect the previously deformed Carboniferous units. The Ponta Ruiva Sector constrains the age of deformation because the E-W dextral shears affect the Late Carboniferous (late Moscovian) units, but not the overlying Triassic series. The new exposed data shows that the NNE-SSW and the E-W faults are dynamically associated and results from the same deformation event. The NNE-SSW sinistral faults could be considered as second order dominoes structures related with first order E-W dextral shears, related with Laurasia-Gondwana collision during Late Carboniferous-Permian Times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an isogeometric thin shell formulation for multi-patches based on rational splines over hierarchical T-meshes (RHT-splines). Nitsche’s method is employed to efficiently couple the patches. The RHT-splines have the advantages of allowing a computationally feasible local refine- ment, are free from linear independence, possess high order continuity and satisfy the partition of unity and non-negativity, properties. In addition, C 1 continuity of the RHT-splines obviates to use of rotational degrees of freedom. The good performance of the present method is demonstrated by a number of numerical examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We predict macroscopic fracture related material parameters of fully exfoliated clay/epoxy nano- composites based on their fine scale features. Fracture is modeled by a phase field approach which is implemented as user subroutines UEL and UMAT in the commercial finite element software Abaqus. The phase field model replaces the sharp discontinuities with a scalar damage field representing the diffuse crack topology through controlling the amount of diffusion by a regularization parameter. Two different constitutive models for the matrix and the clay platelets are used; the nonlinear coupled system con- sisting of the equilibrium equation and a diffusion-type equation governing the phase field evolution are solved via a NewtoneRaphson approach. In order to predict the tensile strength and fracture toughness of the clay/epoxy composites we evaluated the J integral for different specimens with varying cracks. The effect of different geometry and material parameters, such as the clay weight ratio (wt.%) and the aspect ratio of clay platelets are studied.