1 resultado para Surveys and Questionnaires
em Repositório Científico da Universidade de Évora - Portugal
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (3)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- Aquatic Commons (36)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (4)
- Aston University Research Archive (23)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (3)
- B-Digital - Universidade Fernando Pessoa - Portugal (3)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Câmara dos Deputados (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (15)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (29)
- Boston University Digital Common (1)
- Brock University, Canada (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (16)
- Center for Jewish History Digital Collections (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (7)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (12)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (7)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons at Florida International University (13)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (40)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (11)
- Escola Superior de Educação de Paula Frassinetti (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (3)
- Helda - Digital Repository of University of Helsinki (12)
- Indian Institute of Science - Bangalore - Índia (5)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Castelo Branco - Portugal (2)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico de Viseu (4)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Memoria Académica - FaHCE, UNLP - Argentina (12)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (14)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (38)
- Queensland University of Technology - ePrints Archive (101)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (24)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (85)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (18)
- Universidade de Lisboa - Repositório Aberto (6)
- Universidade Federal do Pará (11)
- Universidade Federal do Rio Grande do Norte (UFRN) (14)
- Universidade Metodista de São Paulo (4)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (23)
- Université de Montréal (1)
- Université de Montréal, Canada (10)
- University of Connecticut - USA (1)
- University of Michigan (27)
- University of Queensland eSpace - Australia (12)
- University of Southampton, United Kingdom (1)
- University of Washington (4)
- USA Library of Congress (1)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This paper proposes a process for the classifi cation of new residential electricity customers. The current state of the art is extended by using a combination of smart metering and survey data and by using model-based feature selection for the classifi cation task. Firstly, the normalized representative consumption profi les of the population are derived through the clustering of data from households. Secondly, new customers are classifi ed using survey data and a limited amount of smart metering data. Thirdly, regression analysis and model-based feature selection results explain the importance of the variables and which are the drivers of diff erent consumption profi les, enabling the extraction of appropriate models. The results of a case study show that the use of survey data signi ficantly increases accuracy of the classifi cation task (up to 20%). Considering four consumption groups, more than half of the customers are correctly classifi ed with only one week of metering data, with more weeks the accuracy is signifi cantly improved. The use of model-based feature selection resulted in the use of a signifi cantly lower number of features allowing an easy interpretation of the derived models.