1 resultado para Sub-lattices
em Repositório Científico da Universidade de Évora - Portugal
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- Aquatic Commons (20)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- Archive of European Integration (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Câmara dos Deputados (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (8)
- Boston University Digital Common (1)
- Brock University, Canada (5)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (83)
- CentAUR: Central Archive University of Reading - UK (61)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (67)
- Cochin University of Science & Technology (CUSAT), India (11)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Dalarna University College Electronic Archive (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Archives@Colby (1)
- Diposit Digital de la UB - Universidade de Barcelona (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (16)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (33)
- Greenwich Academic Literature Archive - UK (6)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (45)
- Infoteca EMBRAPA (6)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (22)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (25)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (251)
- Queensland University of Technology - ePrints Archive (82)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (5)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad Nacional Agraria (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (51)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad Autónoma de Nuevo León, Mexico (9)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (15)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (15)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (5)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (4)
Resumo:
We show that a self-generated set of combinatorial games, S, may not be hereditarily closed but, strong self-generation and hereditary closure are equivalent in the universe of short games. In [13], the question “Is there a set which will give an on-distributive but modular lattice?” appears. A useful necessary condition for the existence of a finite non-distributive modular L(S) is proved. We show the existence of S such that L(S) is modular and not distributive, exhibiting the first known example. More, we prove a Representation Theorem with Games that allows the generation of all finite lattices in game context. Finally, a computational tool for drawing lattices of games is presented.