2 resultados para Soil permeability.
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
We analysed the viscera of 321 red foxes collected over the last 30 years in 34 of the 47 provinces of peninsular Spain, and identified their helminth parasites. We measured parasite diversity in each sampled province using four diversity indices: Species richness, Marg a l e f’s species richness index, Shannon’s species diversity index, and inverse Simpson’s index. In order to find geographical, environmental, and/or human-related predictors of fox parasite diversity, we recorded 45 variables related to topography, climate, lithology, habitat heterogeneity, land use, spatial situation, human activity, sampling effort, and fox presence probability (obtained after environmental modelling of fox distribution). We then performed a stepwise linear regression of each diversity index on these variables, to find a minimal subset of statistically significant variables that account for the variation in each diversity index. We found that most parasite diversity indices increase with the mean distance to urban centres, or in other words, foxes in more rural provinces have a more diverse helminth fauna. Sampling effort and fox presence probability (probably related to fox density) also appeared as conditioning variables for some indices, as well as soil permeability (related with water availability). We then extrapolated the models to predict these fox parasite diversity indices in non-sampled provinces and have a view of their geographical trends.
Resumo:
In a previous survey of otters ( Lutra lutra L. 1758) in Spain, different causes were invoked to explain the frequency of the species in each province. To find common causes of the distribution of the otter in Spain, we recorded a number of spatial, environmental and human variables in each Spanish province. We then performed a stepwise linear multiple regression of the proportion of positive sites of otter in the Spanish provinces separately on each of the three groups of variables. Geographic longitude, January air humidity, soil permeability and highway density were the variables selected. A linear regression of the proportion of otter presence on these variables explained 62.4% of the variance. We then used the selected variables in a partial regression analysis to specify which proportions of the variation are explained exclusively by spatial, environmental and human factors, and which proportions are attributable to interactions between these components. Pure environmental effects accounted for only 5.5% of the variation, while pure spatial and pure human effects explained 18% and 9.7%, respectively. Shared variation among the components totalled 29.2%, of which 10.9% was explained by the interaction between environmental and spatial factors. Human factors explained globally less variance than spatial and environmental ones, but the pure human influence was higher than the pure environmental one. We concluded that most of the variation in the proportion of occurrences of otter in Spanish provinces is spatially structured, and that environmental factors have more influence on otter presence than human ones; however, the human influence on otter distribution is less structured in space, and thus can be more disruptive. This effect of large infrastructures on wild populations must be taken into account when planning large-scale conservation policies