3 resultados para Smoothed bootstrap
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Apresenta·se um breve resumo histórico da evolução da amostragem por transectos lineares e desenvolve·se a sua teoria. Descrevemos a teoria de amostragem por transectos lineares, proposta por Buckland (1992), sendo apresentados os pontos mais relevantes, no que diz respeito à modelação da função de detecção. Apresentamos uma descrição do princípio CDM (Rissanen, 1978) e a sua aplicação à estimação de uma função densidade por um histograma (Kontkanen e Myllymãki, 2006), procedendo à aplicação de um exemplo prático, recorrendo a uma mistura de densidades. Procedemos à sua aplicação ao cálculo do estimador da probabilidade de detecção, no caso dos transectos lineares e desta forma estimar a densidade populacional de animais. Analisamos dois casos práticos, clássicos na amostragem por distâncias, comparando os resultados obtidos. De forma a avaliar a metodologia, simulámos vários conjuntos de observações, tendo como base o exemplo das estacas, recorrendo às funções de detecção semi-normal, taxa de risco, exponencial e uniforme com um cosseno. Os resultados foram obtidos com o programa DISTANCE (Thomas et al., in press) e um algoritmo escrito em linguagem C, cedido pelo Professor Doutor Petri Kontkanen (Departamento de Ciências da Computação, Universidade de Helsínquia). Foram desenvolvidos programas de forma a calcular intervalos de confiança recorrendo à técnica bootstrap (Efron, 1978). São discutidos os resultados finais e apresentadas sugestões de desenvolvimentos futuros. ABSTRACT; We present a brief historical note on the evolution of line transect sampling and its theoretical developments. We describe line transect sampling theory as proposed by Buckland (1992), and present the most relevant issues about modeling the detection function. We present a description of the CDM principle (Rissanen, 1978) and its application to histogram density estimation (Kontkanen and Myllymãki, 2006), with a practical example, using a mixture of densities. We proceed with the application and estimate probability of detection and animal population density in the context of line transect sampling. Two classical examples from the literature are analyzed and compared. ln order to evaluate the proposed methodology, we carry out a simulation study based on a wooden stakes example, and using as detection functions half normal, hazard rate, exponential and uniform with a cosine term. The results were obtained using program DISTANCE (Thomas et al., in press), and an algorithm written in C language, kindly offered by Professor Petri Kontkanen (Department of Computer Science, University of Helsinki). We develop some programs in order to estimate confidence intervals using the bootstrap technique (Efron, 1978). Finally, the results are presented and discussed with suggestions for future developments.
Resumo:
A necessidade de conhecer uma população impulsiona um processo de recolha e análise de informação. Usualmente é muito difícil ou impossível estudar a totalidade da população, daí a importância do estudo com recurso a amostras. Conceber um estudo por amostragem é um processo complexo, desde antes da recolha dos dados até a fase de análise dos mesmos. Na maior parte dos estudos utilizam-se combinações de vários métodos probabilísticos de amostragem para seleção de uma amostra, que se pretende representativa da população, denominado delineamento de amostragem complexo. O conhecimento dos erros de amostragem é necessário à correta interpretação dos resultados de inquéritos e à avaliação dos seus planos de amostragem. Em amostras complexas, têm sido usadas aproximações ajustadas à natureza complexa do plano da amostra para a estimação da variância, sendo as mais utilizadas: o método de linearização Taylor e as técnicas de reamostragem e replicação. O principal objetivo deste trabalho é avaliar o desempenho dos estimadores usuais da variância em amostras complexas. Inspirado num conjunto de dados reais foram geradas três populações com características distintas, das quais foram sorteadas amostras com diferentes delineamentos de amostragem, na expectativa de obter alguma indicação sobre em que situações se deve optar por cada um dos estimadores da variância. Com base nos resultados obtidos, podemos concluir que o desempenho dos estimadores da variância da média amostral de Taylor, Jacknife e Bootstrap varia com o tipo de delineamento e população. De um modo geral, o estimador de Bootstrap é o menos preciso e em delineamentos estratificados os estimadores de Taylor e Jackknife fornecem os mesmos resultados; Evaluation of variance estimation methods in complex samples ABSTRACT: The need to know a population drives a process of collecting and analyzing information. Usually is to hard or even impossible to study the whole population, hence the importance of sampling. Framing a study by sampling is a complex process, from before the data collection until the data analysis. Many studies have used combinations of various probabilistic sampling methods for selecting a representative sample of the population, calling it complex sampling design. Knowledge of sampling errors is essential for correct interpretation of the survey results and evaluation of the sampling plans. In complex samples to estimate the variance has been approaches adjusted to the complex nature of the sample plane. The most common are: the linearization method of Taylor and techniques of resampling and replication. The main objective of this study is to evaluate the performance of usual estimators of the variance in complex samples. Inspired on real data we will generate three populations with distinct characteristics. From this populations will be drawn samples using different sampling designs. In the end we intend to get some lights about in which situations we should opt for each one of the variance estimators. Our results show that the performance of the variance estimators of sample mean Taylor, Jacknife and Bootstrap varies with the design and population. In general, the Bootstrap estimator is less precise and in stratified design Taylor and Jackknife estimators provide the same results.
Resumo:
Structured abstract Purpose: To deepen, in grocery retail context, the roles of consumer perceived value and consumer satisfaction, as antecedents’ dimensions of customer loyalty intentions. Design/Methodology/approach: Also employing a short version (12-items) of the original 19-item PERVAL scale of Sweeney & Soutar (2001), a structural equation modeling approach was applied to investigate statistical properties of the indirect influence on loyalty of a reflective second order customer perceived value model. The performance of three alternative estimation methods was compared through bootstrapping techniques. Findings: Results provided i) support for the use of the short form of the PERVAL scale in measuring consumer perceived value; ii) the influence of the four highly correlated independent latent predictors on satisfaction was well summarized by a higher-order reflective specification of consumer perceived value; iii) emotional and functional dimensions were determinants for the relationship with the retailer; iv) parameter’s bias with the three methods of estimation was only significant for bootstrap small sample sizes. Research limitations:/implications: Future research is needed to explore the use of the short form of the PERVAL scale in more homogeneous groups of consumers. Originality/value: Firstly, to indirectly explain customer loyalty mediated by customer satisfaction it was adopted a recent short form of PERVAL scale and a second order reflective conceptualization of value. Secondly, three alternative estimation methods were used and compared through bootstrapping and simulation procedures.