3 resultados para Simulink Allison validazione simulazione turbine compressori LabVIEW
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
This paper presents an integrated model for an offshore wind turbine taking into consideration a contribution for the marine wave and wind speed with perturbations influences on the power quality of current injected into the electric grid. The paper deals with the simulation of one floating offshore wind turbine equipped with a permanent magnet synchronous generator, and a two-level converter connected to an onshore electric grid. The use of discrete mass modeling is accessed in order to reveal by computing the total harmonic distortion on how the perturbations of the captured energy are attenuated at the electric grid injection point. Two torque actions are considered for the three-mass modeling, the aerodynamic on the flexible part and on the rigid part of the blades. Also, a torque due to the influence of marine waves in deep water is considered. Proportional integral fractional-order control supports the control strategy. A comparison between the drive train models is presented.
Resumo:
Sustainability and responsible environmental behaviour constitute a vital premise in the development of the humankind. In fact, during last decades, the global energetic scenario is evolving towards a scheme with increasing relevance of Renewable Energy Sources (RES) like photovoltaic, wind, biomass and hydrogen. Furthermore, hydrogen is an energy carrier which constitutes a mean for long-term energy storage. The integration of hydrogen with local RES contributes to distributed power generation and early introduction of hydrogen economy. Intermittent nature of many of RES, for instance solar and wind sources, impose the development of a management and control strategy to overcome this drawback. This strategy is responsible of providing a reliable, stable and efficient operation of the system. To implement such strategy, a monitoring system is required.The present paper aims to contribute to experimentally validate LabVIEW as valuable tool to develop monitoring platforms in the field of RES-based facilities. To this aim, a set of real systems successfully monitored is exposed.
Resumo:
Irradiation is the main component for producing the electricity from solar energy. When obstacles come in between the sun and the PV cell then it doesn’t get sufficient irradiance to produce enough electricity. Shadowing has a great impact on photovoltaic cell. The main fuel of PV cell is solar radiation. Using solar radiation, a photovoltaic cell produces electricity. The shadow on a PV cell decreases the output of the photovoltaic cell. It has been already shown in different papers that shadow effect decreases the output of the PV cell. There are different kinds of shadow effects which are observed, some minimize the PV cell output and some reduce the output to zero. There are different types of shadow based on their effects on the photovoltaic cell. The shadow has also effects depending on whether the PV cells are connected in series connection or in parallel connection. In series when one cell is out of order then the whole series of the PV cells will not work but in parallel connection if one cell is damaged, the others will work because they work independently. According to the output requirement the arrangement of the PV cells are made in series or parallel. Simulink modeling is made for series and parallel connection between two PV cells and the shadow effect is analyzed on one of the PV cells. Using SIMULINK, the shadowing is simulated on the two PV cells, where in one system they are in series and in another system they are in parallel. Slowly the irradiance is decreased to simulate the shadow effect. Simulation of the shadow effect gives an idea about the output of the PV cell system when system has shadow on the PV cells. Here the shadow effect on the two PV cells using series and parallel combinations are simulated and analyzed for understanding the effects on output.