11 resultados para Similarity analysis
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Dyscalculia stands for a brain-based condition that makes it hard to make sense of numbers and mathematical concepts. Some adolescents with dyscalculia cannot grasp basic number concepts. They work hard to learn and memorize basic number facts. They may know what to do in mathematical classes but do not understand why they are doing it. In other words, they miss the logic behind it. However, it may be worked out in order to decrease its degree of severity. For example, disMAT, an app developed for android may help children to apply mathematical concepts, without much effort, that is turning in itself, a promising tool to dyscalculia treatment. Thus, this work focuses on the development of an Intelligent System to estimate children evidences of dyscalculia, based on data obtained on-the-fly with disMAT. The computational framework is built on top of a Logic Programming framework to Knowledge Representation and Reasoning, complemented with a Case-Based problem solving approach to computing, that allows for the handling of incomplete, unknown, or even contradictory information.
Resumo:
Stroke stands for one of the most frequent causes of death, without distinguishing age or genders. Despite representing an expressive mortality fig-ure, the disease also causes long-term disabilities with a huge recovery time, which goes in parallel with costs. However, stroke and health diseases may also be prevented considering illness evidence. Therefore, the present work will start with the development of a decision support system to assess stroke risk, centered on a formal framework based on Logic Programming for knowledge rep-resentation and reasoning, complemented with a Case Based Reasoning (CBR) approach to computing. Indeed, and in order to target practically the CBR cycle, a normalization and an optimization phases were introduced, and clustering methods were used, then reducing the search space and enhancing the cases re-trieval one. On the other hand, and aiming at an improvement of the CBR theo-retical basis, the predicates` attributes were normalized to the interval 0…1, and the extensions of the predicates that match the universe of discourse were re-written, and set not only in terms of an evaluation of its Quality-of-Information (QoI), but also in terms of an assessment of a Degree-of-Confidence (DoC), a measure of one`s confidence that they fit into a given interval, taking into account their domains, i.e., each predicate attribute will be given in terms of a pair (QoI, DoC), a simple and elegant way to represent data or knowledge of the type incomplete, self-contradictory, or even unknown.
Resumo:
The nosocomial infections are a growing concern because they affect a large number of people and they increase the admission time in healthcare facilities. Additionally, its diagnosis is very tricky, requiring multiple medical exams. So, this work is focused on the development of a clinical decision support system to prevent these events from happening. The proposed solution is unique once it caters for the explicit treatment of incomplete, unknown, or even contradictory information under a logic programming basis, that to our knowledge is something that happens for the first time.
Resumo:
Due to the high standards expected from diagnostic medical imaging, the analysis of information regarding waiting lists via different information systems is of utmost importance. Such analysis, on the one hand, may improve the diagnostic quality and, on the other hand, may lead to the reduction of waiting times, with the concomitant increase of the quality of services and the reduction of the inherent financial costs. Hence, the purpose of this study is to assess the waiting time in the delivery of diagnostic medical imaging services, like computed tomography and magnetic resonance imaging. Thereby, this work is focused on the development of a decision support system to assess waiting times in diagnostic medical imaging with recourse to operational data of selected attributes extracted from distinct information systems. The computational framework is built on top of a Logic Programming Case-base Reasoning approach to Knowledge Representation and Reasoning that caters for the handling of in-complete, unknown, or even self-contradictory information.
Resumo:
Waiting time at an intensive care unity stands for a key feature in the assessment of healthcare quality. Nevertheless, its estimation is a difficult task, not only due to the different factors with intricate relations among them, but also with respect to the available data, which may be incomplete, self-contradictory or even unknown. However, its prediction not only improves the patients’ satisfaction but also enhance the quality of the healthcare being provided. To fulfill this goal, this work aims at the development of a decision support system that allows one to predict how long a patient should remain at an emergency unit, having into consideration all the remarks that were just stated above. It is built on top of a Logic Programming approach to knowledge representation and reasoning, complemented with a Case Base approach to computing.
Resumo:
Thrombophilia stands for a genetic or an acquired tendency to hypercoagulable states that increase the risk of venous and arterial thromboses. Indeed, venous thromboembolism is often a chronic illness, mainly in deep venous thrombosis and pulmonary embolism, requiring lifelong prevention strategies. Therefore, it is crucial to identify the cause of the disease, the most appropriate treatment, the length of treatment or prevent a thrombotic recurrence. Thus, this work will focus on the development of a diagnosis decision support system in terms of a formal agenda built on a logic programming approach to knowledge representation and reasoning, complemented with a case-based approach to computing. The proposed model has been quite accurate in the assessment of thrombophilia predisposition risk, since the overall accuracy is higher than 90% and sensitivity ranging in the interval [86.5%, 88.1%]. The main strength of the proposed solution is the ability to deal explicitly with incomplete, unknown, or even self-contradictory information.
Resumo:
It is well known that rib cage dimensions depend on the gender and vary with the age of the individual. Under this setting it is therefore possible to assume that a computational approach to the problem may be thought out and, consequently, this work will focus on the development of an Artificial Intelligence grounded decision support system to predict individual’s age, based on such measurements. On the one hand, using some basic image processing techniques it were extracted such descriptions from chest X-rays (i.e., its maximum width and height). On the other hand, the computational framework was built on top of a Logic Programming Case Base approach to knowledge representation and reasoning, which caters for the handling of incomplete, unknown, or even contradictory information. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process. The accuracy of the proposed model is satisfactory, close to 90%.
Resumo:
Plants of genus Schinus are native South America and introduced in Mediterranean countries, a long time ago. Some Schinus species have been used in folk medicine, and Essential Oils of Schinus spp. (EOs) have been reported as having antimicrobial, anti-tumoural and anti-inflammatory properties. Such assets are related with the EOs chemical composition that depends largely on the species, the geographic and climatic region, and on the part of the plants used. Considering the difficulty to infer the pharmacological properties of EOs of Schinus species without a hard experimental setting, this work will focus on the development of an Artificial Intelligence grounded Decision Support System to predict pharmacological properties of Schinus EOs. The computational framework was built on top of a Logic Programming Case Base approach to knowledge representation and reasoning, which caters to the handling of incomplete, unknown, or even self-contradictory information. New clustering methods centered on an analysis of attribute’s similarities were used to distinguish and aggregate historical data according to the context under which it was added to the Case Base, therefore enhancing the prediction process.
Resumo:
It is well known that human resources play a valuable role in a sustainable organizational development. Indeed, this work will focus on the development of a decision support system to assess workers’ satisfaction based on factors related to human resources management practices. The framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a Case Based approach to computing. The proposed solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in terms of a qualitative or quantitative setting. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data or knowledge in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process.
Resumo:
Some decades of research on emotional development have underlined the contribution of several domains to emotional understanding in childhood. Based on this research, Pons and colleagues (Pons & Harris, 2002; Pons, Harris & Rosnay, 2004) have proposed the Test of Emotion Comprehension (TEC) which assesses nine domains of emotional understanding, namely the recognition of emotions, based on facial expressions; the comprehension of external emotional causes; impact of desire on emotions; emotions based on beliefs; memory influence on emotions; possibility of emotional regulation; possibility of hiding an emotional state; having mixed emotions; contribution of morality to emotional experiences. This instrument was administered individually to 182 Portuguese children aged between 8 and 11 years, of 3rd and 4th grades, in public schools. Additionally, we used the Socially in Action-Peers (SAp) (Rocha, Candeias & Lopes da Silva, 2012) to assess TEC’s criterion-related validity. Mean differences results in TEC by gender and by socio-economic status (SES) were analyzed. The results of the TEC’s psychometric analysis were performed in terms of items’ sensitivity and reliability (stability, test-retest). Finally, in order to explore the theoretical structure underlying TEC a Confirmatory Factor Analysis and a Similarity Structure Analysis were computed. Implications of these findings for emotional understanding assessment and intervention in childhood are discussed.
Resumo:
fuzzySim is an R package for calculating fuzzy similarity in species occurrence patterns. It includes functions for data preparation, such as converting species lists (long format) to presence-absence tables (wide format), obtaining unique abbreviations of species names, or transposing (parts of) complex data frames; and sample data sets for providing practical examples. It can convert binary presence-absence to fuzzy occurrence data, using e.g. trend surface analysis, inverse distance interpolation or prevalence-independent environmental favourability modelling, for multiple species simultaneously. It then calculates fuzzy similarity among (fuzzy) species distributions and/or among (fuzzy) regional species compositions. Currently available similarity indices are Jaccard, Sørensen, Simpson, and Baroni-Urbani & Buser.