4 resultados para Search space reduction

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stroke stands for one of the most frequent causes of death, without distinguishing age or genders. Despite representing an expressive mortality fig-ure, the disease also causes long-term disabilities with a huge recovery time, which goes in parallel with costs. However, stroke and health diseases may also be prevented considering illness evidence. Therefore, the present work will start with the development of a decision support system to assess stroke risk, centered on a formal framework based on Logic Programming for knowledge rep-resentation and reasoning, complemented with a Case Based Reasoning (CBR) approach to computing. Indeed, and in order to target practically the CBR cycle, a normalization and an optimization phases were introduced, and clustering methods were used, then reducing the search space and enhancing the cases re-trieval one. On the other hand, and aiming at an improvement of the CBR theo-retical basis, the predicates` attributes were normalized to the interval 0…1, and the extensions of the predicates that match the universe of discourse were re-written, and set not only in terms of an evaluation of its Quality-of-Information (QoI), but also in terms of an assessment of a Degree-of-Confidence (DoC), a measure of one`s confidence that they fit into a given interval, taking into account their domains, i.e., each predicate attribute will be given in terms of a pair (QoI, DoC), a simple and elegant way to represent data or knowledge of the type incomplete, self-contradictory, or even unknown.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well known that rib cage dimensions depend on the gender and vary with the age of the individual. Under this setting it is therefore possible to assume that a computational approach to the problem may be thought out and, consequently, this work will focus on the development of an Artificial Intelligence grounded decision support system to predict individual’s age, based on such measurements. On the one hand, using some basic image processing techniques it were extracted such descriptions from chest X-rays (i.e., its maximum width and height). On the other hand, the computational framework was built on top of a Logic Programming Case Base approach to knowledge representation and reasoning, which caters for the handling of incomplete, unknown, or even contradictory information. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process. The accuracy of the proposed model is satisfactory, close to 90%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well known that human resources play a valuable role in a sustainable organizational development. Indeed, this work will focus on the development of a decision support system to assess workers’ satisfaction based on factors related to human resources management practices. The framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a Case Based approach to computing. The proposed solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in terms of a qualitative or quantitative setting. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data or knowledge in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Declarative techniques such as Constraint Programming can be very effective in modeling and assisting management decisions. We present a method for managing university classrooms which extends the previous design of a Constraint-Informed Information System to generate the timetables while dealing with spatial resource optimization issues. We seek to maximize space utilization along two dimensions: classroom use and occupancy rates. While we want to maximize the room use rate, we still need to satisfy the soft constraints which model students’ and lecturers’ preferences. We present a constraint logic programming-based local search method which relies on an evaluation function that combines room utilization and timetable soft preferences. Based on this, we developed a tool which we applied to the improvement of classroom allocation in a University. Comparing the results to the current timetables obtained without optimizing space utilization, the initial versions of our tool manages to reach a 30% improvement in space utilization, while preserving the quality of the timetable, both for students and lecturers.