3 resultados para Scaling law

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a multiscale model bridging length and time scales from molecular to continuum levels with the objective of predicting the yield behavior of amorphous glassy polyethylene (PE). Constitutive pa- rameters are obtained from molecular dynamics (MD) simulations, decreasing the requirement for ad- hoc experiments. Consequently, we achieve: (1) the identification of multisurface yield functions; (2) the high strain rate involved in MD simulations is upscaled to continuum via quasi-static simulations. Validation demonstrates that the entire multisurface yield functions can be scaled to quasi-static rates where the yield stresses are possibly predicted by a proposed scaling law; (3) a hierarchical multiscale model is constructed to predict temperature and strain rate dependent yield strength of the PE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When blood flows through small vessels, the two-phase nature of blood as a suspension of red cells (erythrocytes) in plasma cannot be neglected, and with decreasing vessel size, a homogeneous continuum model become less adequate in describing blood flow. Following the Haynes’ marginal zone theory, and viewing the flow as the result of concentric laminae of fluid moving axially, the present work provides models for fluid flow in dichotomous branching composed by larger and smaller vessels, respectively. Expressions for the branching sizes of parent and daughter vessels, that provides easier flow access, are obtained by means of a constrained optimization approach using the Lagrange multipliers. This study shows that when blood behaves as a Newtonian fluid, Hess – Murray law that states that the daughters-to-parent diameter ratio must equal to 2^(-1/3) is valid. However, when the nature of blood as a suspension becomes important, the expression for optimum branching diameters of vessels is dependent on the separation phase lengths. It is also shown that the same effect occurs for the relative lengths of daughters and parent vessels. For smaller vessels (e. g., arterioles and capillaries), it is found that the daughters-to-parent diameter ratio may varies from 0,741 to 0,849, and the daughters-to-parent length ratio varies from 0,260 to 2,42. For larger vessels (e. g., arteries), the daughters-to-parent diameter ratio and the daughters-to-parent length ratio range from 0,458 to 0,819, and from 0,100 to 6,27, respectively. In this paper, it is also demonstrated that the entropy generated when blood behaves as a single phase fluid (i. e., continuum viscous fluid) is greater than the entropy generated when the nature of blood as a suspension becomes important. Another important finding is that the manifestation of the particulate nature of blood in small vessels reduces entropy generation due to fluid friction, thereby maintaining the flow through dichotomous branching vessels at a relatively lower cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a recent paper [1] Reis showed that both the principles of extremum of entropy production rate, which are often used in the study of complex systems, are corollaries of the Constructal Law. In fact, both follow from the maximization of overall system conductivities, under appropriate constraints. In this way, the maximum rate of entropy production (MEP) occurs when all the forces in the system are kept constant. On the other hand, the minimum rate of entropy production (mEP) occurs when all the currents that cross the system are kept constant. In this paper it is shown how the so-called principle of "minimum energy expenditure" which is often used as the basis for explaining many morphologic features in biologic systems, and also in inanimate systems, is also a corollary of Bejan's Constructal Law [2]. Following the general proof some cases namely, the scaling laws of human vascular systems and river basins are discussed as illustrations from the side of life, and inanimate systems, respectively.