2 resultados para Sand burial

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tsunamis are highly energetic events that may destructively impact the coast. Resolving the degree of coastal resilience to tsunamis is extremely difficult and sometimes impossible. In part, our understanding is constrained by the limited number of contemporaneous examples and by the high dynamism of coastal systems. In fact, longterm changes of coastal systems can mask the evidence of past tsunamis, leaving us a short or incomplete sedimentary archive. Here, we present a multidisciplinary approach involving sedimentological, geomorphological and geophysical analyses and numerical modelling of the AD 1755 tsunami flood on a coastal segment located within the southern coast of Portugal. In particular, the work focuses on deciphering the impact of the tsunami waves over a coastal sand barrier enclosing two lowlands largely inundated by the tsunami flood. Erosional features documented by geophysical data were assigned to the AD 1755 eventwith support of sedimentological and age estimation results. Furthermore, these features allowed the calibration of the simulation settings to reconstruct the local conditions and establish the run-up range of the AD 1755 tsunami when it hit this coast (6– 8 m above mean sea level). Our work highlights the usefulness of erosional imprints preserved in the sediment record to interpret the impact of the extreme events on sand barriers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detrital zircons from Holocene beach sand and igneous zircons from the Cretaceous syenite forming Cape Sines (Western Iberian margin) were dated using laser ablation – inductively coupled plasma – mass spectrometry. The U–Pb ages obtained were used for comparison with previous radiometric data from Carboniferous greywacke, Pliocene–Pleistocene sand and Cretaceous syenite forming the sea cliff at Cape Sines and the contiguous coast. New U–Pb dating of igneous morphologically simple and complex zircons from the syenite of the Sines pluton suggests that the history of zircon crystallization was more extensive (ca 87 to 74 Ma), in contrast to the findings of previous geochronology studies (ca 76 to 74 Ma). The U–Pb ages obtained in Holocene sand revealed a wide interval, ranging from the Cretaceous to the Archean, with predominance of Cretaceous (37%), Palaeozoic (35%) and Neoproterozoic (19%) detrital-zircon ages. The paucity of round to subrounded grains seems to indicate a short transportation history for most of the Cretaceous zircons (ca 95 to 73 Ma) which are more abundant in the beach sand that was sampled south of Cape Sines. Comparative analysis using the Kolmogorov–Smirnov statistical method, analysing sub-populations separately, suggests that the zircon populations of the Carboniferous and Cretaceous rocks forming the sea cliff were reproduced faithfully in Quaternary sand, indicating sediment recycling. The similarity of the pre- Cretaceous ages (>ca 280 Ma) of detrital zircons found in Holocene sand, as compared with Carboniferous greywacke and Pliocene–Pleistocene sand, provides support for the hypothesis that detritus was reworked into the beach from older sedimentary rocks exposed along the sea cliff. The largest percentage of Cretaceous zircons (sand, as com- pared with Pliocene–Pleistocene sand (secondary recycled source), suggests that the Sines pluton was the one of the primary sources that became progressively more exposed to erosion during Quaternary uplift. This work highlights the application of the Kolmogorov–Smirnov method in compar- ison of zircon age populations used to identify provenance and sediment recycling in modern and ancient detrital sedimentary sequences.