3 resultados para SVM

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subtle structural differencescan be observed in the islets of Langer-hans region of microscopic image of pancreas cell of the rats having normal glucose tolerance and the rats having pre-diabetic(glucose intolerant)situa-tions. This paper proposes a way to automatically segment the islets of Langer-hans region fromthe histological image of rat's pancreas cell and on the basis of some morphological feature extracted from the segmented region the images are classified as normal and pre-diabetic.The experiment is done on a set of 134 images of which 56 are of normal type and the rests 78 are of pre-diabetictype. The work has two stages: primarily,segmentationof theregion of interest (roi)i.e. islets of Langerhansfrom the pancreatic cell and secondly, the extrac-tion of the morphological featuresfrom the region of interest for classification. Wavelet analysis and connected component analysis method have been used for automatic segmentationof the images. A few classifiers like OneRule, Naïve Bayes, MLP, J48 Tree, SVM etc.are used for evaluation among which MLP performed the best.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes various experiments done to investigate author profiling of tweets in 4 different languages – English, Dutch, Italian, and Spanish. Profiling consists of age and gender classification, as well as regression on 5 different person- ality dimensions – extroversion, stability, agreeableness, open- ness, and conscientiousness. Different sets of features were tested – bag-of-words, word ngrams, POS ngrams, and average of word embeddings. SVM was used as the classifier. Tfidf worked best for most English tasks while for most of the tasks from the other languages, the combination of the best features worked better.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of this study is to evaluate the best set of features that automatically enables the identification of argumentative sentences from unstructured text. As corpus, we use case laws from the European Court of Human Rights (ECHR). Three kinds of experiments are conducted: Basic Experiments, Multi Feature Experiments and Tree Kernel Experiments. These experiments are basically categorized according to the type of features available in the corpus. The features are extracted from the corpus and Support Vector Machine (SVM) and Random Forest are the used as Machine learning algorithms. We achieved F1 score of 0.705 for identifying the argumentative sentences which is quite promising result and can be used as the basis for a general argument-mining framework.