2 resultados para Riparian forest fragments
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The “dicótilo-palmácea” mixed forest is found in the fluvial plains (floodplains) of watercourses on the Ceará semiarid region (Brazil), distinguishing from the surrounding vegetation (caatinga) by the prevalence of larger tree species. In the river’s margins, presenting high variability in the extension of the riverbanks, arise floodplains in pedologic complexes mainly composed by neossols and argissols, resulting from the deposition of sediments. In these areas of high fertility soils and subjected to flooding during part of the year, it develops a particular type of riparian vegetation dominated by carnauba palm tree (Copernicia prunifera (Mill.) H.E. Moore) forming a particular type of riparian forest, designated by carnaubal palm forest. We aimed to carry out floristic and phytosociological surveys of carnauba palm forests located in the northern region of Ceará. The classical sigmatist method of Braun-Blanquet was applied and classification analysis (Twinspan) was perfomed. The field work occurred in March 2014 and 2016 in eight areas: Fazenda Pedra Branca (03º 37’ 10’’ S e 40º 18’ 30’’ W, 104 m asl), Vale do Rio Bom Jesus (04º 04’ 42’’ S e 39º 57’ 08’’ W, 200 m asl), Lagoa do Peixe (03º 56’ 28’’ S e 40º 23’ 23’’ W, 97 m asl), Fazenda Peixes (04º 06’ 03’’ S e 40º 32’ 43’’ W, 114 m asl), Fazenda Natividade (04º 02’ 50’’ S e 40º 29’ 03’’ W, 109 m asl), Fazenda Morro Alto (02º 53’ 42’’ S e 39º 54’ 51’’ W, 16 m asl), Fazenda Araticum (03º 04’ 58’’ S e 40º 09’ 36’’ W, 19 m asl) and Fazenda Experimental da UVA (03º 37' 04'' S 40º 18' 18'' W, 200 m asl).The floristic list consists of 170 species, distributed between 127 genera and 50 families. Twenty-seven Brazilian endemic species were identified, from which 8 are exclusive of the Caatinga biome. The Fabaceae was the most representative family, with the highest number of species (28), followed by Poaceae (17), Malvaceaea (14), Euphorbiaceae (12), Asteraceaea (9), Convolvulaceae and Rubiaceae (9). The dominant life forms were therophytes (34%), phanerophytes (30%) and chamaephytes (18%). Two communities were identified as a result of the classification analysis using the Twinspan.
Resumo:
Context Understanding connectivity patterns in relation to habitat fragmentation is essential to landscape management. However, connectivity is often judged from expert opinion or species occurrence patterns, with very few studies considering the actual movements of individuals. Path selection functions provide a promising tool to infer functional connectivity from animal movement data, but its practical application remains scanty. Objectives We aimed to describe functional connectivity patterns in a forest carnivore using path-level analysis, and to explore how connectivity is affected by land cover patterns and road networks. Methods We radiotracked 22 common genets in a mixed forest-agricultural landscape of southern Portugal. We developed path selection functions discriminating between observed and random paths in relation to landscape variables. These functions were used together with land cover information to map conductance surfaces. Results Genets moved preferentially within forest patches and close to riparian habitats. Functional connectivity declined with increasing road density, but increased with the proximity of culverts, viaducts and bridges. Functional connectivity was favoured by large forest patches, and by the presence of riparian areas providing corridors within open agricultural land. Roads reduced connectivity by dissecting forest patches, but had less effect on riparian corridors due to the presence of crossing structures. Conclusions Genet movements were jointly affected by the spatial distribution of suitable habitats, and the presence of a road network dissecting such habitats and creating obstacles in areas otherwise permeable to animal movement. Overall, the study showed the value of path-level analysis to assess functional connectivity patterns in human-modified landscapes.