2 resultados para Repeated Averages of Real-Valued Functions

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to advance the knowledge about precipitation development over Madeira island, four rainfall patterns are investigated based on high-resolution numerical simulations performed with the MESO-NH model. The main environmental conditions during these precipitation periods are examined, and important factors leading to significant accumulated precipitation in Madeira are shown. We found that the combination of orographic effect and atmospheric conditions is essential for the establishment of each situation. Under a moist and conditionally unstable atmosphere, convection over the island is triggered, and its location was determined mainly by variations of the ambient flow, which was also associated with different moist Froude numbers. Interestingly, our results showed some similarities with situations discussed in idealized studies. However, the real variations of the atmospheric configuration confirm the complexity of significant precipitation development in mountainous regions. In addition, precipitating systems initially formed over the ocean were simulated reaching the island. The four periods were characterised by different time durations, and the local terrain interacting with the mesoscale circulation was decisive in producing a large part of the precipitation, which concentrated in distinct regions of the island induced by the airflow dynamic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the determination of a mean solar radiation year and of a typical meteorological year for the region of Funchal in the Madeira Island, Portugal. The data set includes hourly mean and extreme values for air temperature, relative humidity and wind speed and hourly mean values for solar global and diffuse radiation for the period 2004-2014, with maximum data coverage of 99.7%. The determination of the mean solar radiation year consisted, in a first step, in the average of all values for each pair hour/day and, in a second step, in the application of a five days centred moving average of hourly values. The determination of the typical meteorological year was based on Finkelstein-Schafer statistics, which allows to obtain a complete year of real measurements through the selection and combination of typical months, preserving the long term averages while still allowing the analysis of short term events. The typical meteorological year validation was carried out through the comparison of the monthly averages for the typical year with the long term monthly averages. The values obtained were very close, so that the typical meteorological year can accurately represent the long term data series. The typical meteorological year can be used in the simulation of renewable energy systems, namely solar energy systems, and for predicting the energy performance of buildings.