9 resultados para Renewable energy sources.
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Sustainability and responsible environmental behaviour constitute a vital premise in the development of the humankind. In fact, during last decades, the global energetic scenario is evolving towards a scheme with increasing relevance of Renewable Energy Sources (RES) like photovoltaic, wind, biomass and hydrogen. Furthermore, hydrogen is an energy carrier which constitutes a mean for long-term energy storage. The integration of hydrogen with local RES contributes to distributed power generation and early introduction of hydrogen economy. Intermittent nature of many of RES, for instance solar and wind sources, impose the development of a management and control strategy to overcome this drawback. This strategy is responsible of providing a reliable, stable and efficient operation of the system. To implement such strategy, a monitoring system is required.The present paper aims to contribute to experimentally validate LabVIEW as valuable tool to develop monitoring platforms in the field of RES-based facilities. To this aim, a set of real systems successfully monitored is exposed.
Resumo:
This document addresses the direct and indirect use of energy in European organic greenhouse horticulture (OGH) with the aim of reviewing available means for making it more environmental friendly and identifying knowledge gaps that should be addressed to attain this aim. The first observation is that there is no common regulation for energy use in OGH, which is not unexpected, since the need for climatisation is not uniformly distributed in the EU (and outside). Accordingly, the EU directive on organic agriculture does not set limitations on the use of energy, but rather promotes the responsible use of energy and of natural resources. The restrictions and rules of most private standards are slightly more stringent. Some standards have specific restrictions on the amount and sources of energy and/or on the seasonal use of energy for heating. Some standards also address processes that may affect (in)direct energy use, such as cultivation methods, mulching, lighting and growing media or substrates. However, most private standards have no or little restrictions or regulations on energy use. Accordingly, it should not surprise that very little quantitative information is available about energy use in OGH. In the present document we have filled the gaps with data with estimates drawn on energy use in conventional greenhouses. With respect to ongoing research, whereas many of the present research results about energy use and saving in conventional greenhouses are relevant (and also applied) in OGH, little research is devoted to address the energy use that is peculiar to OGH, particularly energy use for humidity control. In short, there are still a lot of knowledge gaps to improve quality and to lower energy use in organic greenhouses. The purpose of this document is a summary of present relevant knowledge about energy use and energy saving and of the perspective for improvement. In particular, the goal is to make an overview on the methods and technologies which can be used to reduce the energy use in OGH. We start from the assumption that methods and technologies that are used for reducing direct and indirect energy in conventional greenhouses can also be applied in organic greenhouses. Research on reducing energy use in conventional greenhouses is also more widely available because the area of conventional greenhouse horticulture is much larger than the area of OGH. When implementing these methods and techniques we should take into account the specific characteristics of organic agriculture like soil-based cultivation, use of organic fertilizers and the limited use of crop protection products. This document is organised as follows: first we report the results of a survey about energy use and relevant standards in the countries participating to the COST action (chapter 1); then we review the energy use for climatisation: heating (chapter 2) and humidity (chapter 3). In chapter 4 we review the available design and management means that would either reduce energy use and/or increase energy use efficiency by increasing productivity of OGH. In chapter 5 we present a short summary of existing information on indirect energy use, that is the energy required to manufacture production means (greenhouse structure and cover, fertilisers, equipment etc.) and for crop protection, particularly steaming, and briefly discuss possible savings. Finally (chapter 6) we review briefly the potential for application of renewable energy sources in OGH.
Resumo:
The increasing integration of renewable energies in the electricity grid contributes considerably to achieve the European Union goals on energy and Greenhouse Gases (GHG) emissions reduction. However, it also brings problems to grid management. Large scale energy storage can provide the means for a better integration of the renewable energy sources, for balancing supply and demand, to increase energy security, to enhance a better management of the grid and also to converge towards a low carbon economy. Geological formations have the potential to store large volumes of fluids with minimal impact to environment and society. One of the ways to ensure a large scale energy storage is to use the storage capacity in geological reservoir. In fact, there are several viable technologies for underground energy storage, as well as several types of underground reservoirs that can be considered. The geological energy storage technologies considered in this research were: Underground Gas Storage (UGS), Hydrogen Storage (HS), Compressed Air Energy Storage (CAES), Underground Pumped Hydro Storage (UPHS) and Thermal Energy Storage (TES). For these different types of underground energy storage technologies there are several types of geological reservoirs that can be suitable, namely: depleted hydrocarbon reservoirs, aquifers, salt formations and caverns, engineered rock caverns and abandoned mines. Specific site screening criteria are applicable to each of these reservoir types and technologies, which determines the viability of the reservoir itself, and of the technology for any particular site. This paper presents a review of the criteria applied in the scope of the Portuguese contribution to the EU funded project ESTMAP – Energy Storage Mapping and Planning.
Resumo:
The variability in non-dispatchable power generation raises important challenges to the integration of renewable energy sources into the electricity power grid. This paper provides the coordinated trading of wind and photovoltaic energy to mitigate risks due to the wind and solar power variability, electricity prices, and financial penalties arising out the generation shortfall and surplus. The problem of wind-photovoltaic coordinated trading is formulated as a linear programming problem. The goal is to obtain the optimal bidding strategy that maximizes the total profit. The wind-photovoltaic coordinated operation is modeled and compared with the uncoordinated operation. A comparison of the models and relevant conclusions are drawn from an illustrative case study of the Iberian day-ahead electricity market.
Resumo:
A exigência energética global está mais orientada para a utilização das fontes de Energias Renováveis (FERs), comprometendo e garantindo um desenvolvimento sustentável. Este trabalho tem como objetivo contribuir para o atingir das metas do PED 2011-2030, no que refere à utilização das FER, em particular do potencial eólico em Timor-Leste. Timor-Leste tem apresentado um grande interesse na política de aproveitamento de FER para alcançar a meta de longo prazo de PED 2030, comprometendo-se com o desenvolvimento sustentável através de ERs. Este trabalho pretende contribuir em particular com o estudo do aproveitamento de energia eólica. Com base no clima do vento de longo termo entre 2004 – 2012, da estação meteorológica (EM) de Díli e conjugando estes com os dados da campanha experimental de Martifer cedidos, de Dezembro 2008 - Novembro 2009, obteve-se o coeficiente de variabilidade (Cvariab.) inter-anual. Foi assim possível construir o mapa médio do vento de longo termo, com modelo atmosférico de mesoscala, numa resolução refinada de 3×3 km. Para a identificação dos locais mais favoráveis do vento, foi utilizado o modelo ArcGIS para georreferenciação do recurso. A filtragem das restrições e os constrangimentos do terreno permitiu construir o mapa do vento sustentável de Timor-Leste, por distritos, subdistritos, sucos, do enclave de Oecússi e a ilha de Atauro, o que conduziu à hierarquização de cinco zonas favoráveis (zona 1 - 5). A contribuição para o plano energético de Timor-Leste consiste em duas fases: - a 1ª fase o aproveitamento eólico em três PEs nas zonas monitorizadas (3 e 5) oriundo de dados cedidos pela Martifer, contabilizou-se um total de 424.694 MWh de produção de energia anual, tendo-se verificado o custo normalizado de energia (LCOE) no valor médio calculado de 0,046 €/kWh; - na 2ª fase a construção de acesso e o desenvolvimento de PEs nas zonas 1, 2 e 4 para o Cenário de Max-Renovável. Assim sendo, viabilizam a "Perspetiva de Utilização da Energia Eólica" no quadro do PED 2011 - 2030 de Timor-Leste, que viria reduzir o custo de produção de energia atual, e a emissão de CO2; Abstract: Prospects of Using Wind Energy in Timor-Leste The demand for global energy is more focused on the use of Reneweable Energy sources (REs), ensuring and committing itself to sustainable development. This study was prompted by the wish to contribute to the achievement the goals of the Strategic Development Plan (PED 2011-2030) regarding the use of REs, particularly the wind energy in Timor-Leste. Timor-Leste has presented a great interest in the use of renewable energy sources policy to achieve the long term goal of the PED 2030, committing to a sustainable development through renewable energy. This thesis intends to contribute in particular with the study of the use of wind energy. Based on the long term wind climate between 2004 and 2012 of the Díli weather station and combining these data with the Martifer campaign experimental data of December 2008 - November 2009, the interannual variation coefficient (Cv) was obtained. Thus, it was possible to build the map of long term average wind with atmospheric mesoscale model in a refined resolution of 3×3 km. The ArcGIS model was used for the identification of the most favorable locations of the wind for its georeferencing. The constraining of filtering and the constraints of the terrain allowed to construe the sustainable wind map of Timor-Leste in distritos, subdistritos, sucos, and also of the enclave of Oecussi and Atauro island, which led to the ranking of five favorable areas (zone 1-5) for an immediate experimental campaign of wind characterization and utilization of this resource in wind parks. The contribution to Timor-Leste's energy plan consists of two phases: - the first phase of three wind farms in zone (3 and 5) from data provided by Martifer, a total of 424,694 MWh, and levelyzed cost of electricity (LCOE) in the calculated average value of 0.046 €/kWh; - in the second phase the construction of access and development of wind farms in zones 1, 2 and 4 for the Max-Renewable Scenario. As such, they make possible the "Perspective of Wind Energy Use" in Timor Leste’s PED 2011 - 2030, which would reduce current energy production costs and CO2 emissions.
Resumo:
The variability in non-dispatchable power generation raises important challenges to the integration of renewable energy sources into the electricity power grid. This paper provides the coordinated trading of wind and photovoltaic energy assisted by a cyber-physical system for supporting management decisions to mitigate risks due to the wind and solar power variability, electricity prices, and financial penalties arising out the generation shortfall and surplus. The problem of wind-photovoltaic coordinated trading is formulated as a stochastic linear programming problem. The goal is to obtain the optimal bidding strategy that maximizes the total profit. The wind-photovoltaic coordinated operation is modelled and compared with the uncoordinated operation. A comparison of the models and relevant conclusions are drawn from an illustrative case study of the Iberian day-ahead electricity market.
Resumo:
Stirling engines with parabolic dish for thermal to electric conversion of solar energy is one of the most promising solutions of renewable energy technologies in order to reduce the dependency from fossil fuels in electricity generation. This paper addresses the modelling and simulation of a solar powered Stirling engine system with parabolic dish and electric generator aiming to determine its energy production and efficiency. The model includes the solar radiation concentration system, the heat transfer in the ther- mal receiver, the thermal cycle and the mechanical and electric energy conversion. The thermodynamic and energy transfer processes in the engine are modelled in detail, including all the main processes occur- ring in the compression, expansion and regenerator spaces. Starting from a particular configuration, an optimization of the concentration factor is also carried out and the results for both the transient and steady state regimes are presented. It was found that using a directly illuminated thermal receiver with- out cavity the engine efficiency is close to 23.8% corresponding to a global efficiency of 10.4%. The com- ponents to be optimized are identified in order to increase the global efficiency of the system and the trade-off between system complexity and efficiency is discussed.
Resumo:
This chapter aims to develop a new method for the economical evaluation of Hybrid Systems for electricity production. The different types of renewable sources are specifically evaluated in the economical performance of the overall equipment. The presented methodology was applied to evaluate the design of a photovoltaic-wind-diesel hybrid system to produce electricity for a community in the neighbourhood of Luanda, Angola. Once the hybrid generator is selected, it is proposed to provide the system with a supervisory control strategy to maximize its operating efficiency.
Resumo:
The use of renewable energies as a response to the EU targets defined for 2030 Climate Change and Energy has been increasing. Also non-dispatchable and intermittent renewable energies like wind and solar cannot generally match supply and demand, which can also cause some problems in the grid. So, the increased interest in energy storage has evolved and there is nowadays an urgent need for larger energy storage capacity. Compressed Air Energy Storage (CAES) is a proven technology for storing large quantities of electrical energy in the form of high-pressure air for later use when electricity is needed. It exists since the 1970’s and is one of the few energy storage technologies suitable for long duration (tens of hours) and utility scale (hundreds to thousands of MW) applications. It is also one of the most cost-effective solutions for large to small scale storage applications. Compressed Air Energy Storage can be integrated and bring advantages to different levels of the electric system, from the Generation level, to the Transmission and Distribution levels, so in this paper a revisit of CAES is done in order to better understand what and how it can be used for our modern needs of energy storage.