3 resultados para Rehabilitation and access

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleobase-functionalized polymers are widely used in the fields of supramolecular chemistry and self-assembly, and their development for biomedical applications is also an area of interest. They are usually synthesized by tedious multistep procedures. In this study, we assess adenine as an organoinitiator/ organocatalyst for the ring-opening polymerization of lactide. L-Lactide can be quantitatively polymerized in the presence of adenine. Reaction conditions involving short reaction times and relatively low temperatures enable the access to adenine end-capped polylactide in a simple one-step procedure, in bulk, without additional catalyst. DFT calculations show that the polymerization occurs via hydrogen bond catalysis. The mechanism involves (i) a hydrogen bond between the NH9 of adenine and the carbonyl moiety of lactide, leading to an electron deficient carbon atom, and (ii) a second hydrogen bond between the N3 of adenine and the NH2 of a second adenine molecule, followed by a nucleophilic attack of the latter activated amine on the former electron deficient carbon on the monomer. For longer reaction times and higher temperatures, macrocyclic species are formed, and a mechanism involving the imidazole ring of adenine is proposed based on literature studies. Depending on the reaction conditions, adenine can thus be considered as an organoinitiator or an organocatalyst for the ring-opening polymerization of lactide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleobase-functionalized polymers are widely used in the fields of supramolecular chemistry and self-assembly, and their development for biomedical applications is also an area of interest. They are usually synthesized by tedious multistep procedures. In this study, we assess adenine as an organoinitiator/organocatalyst for the ring-opening polymerization of lactide. L-Lactide can be quantitatively polymerized in the presence of adenine. Reaction conditions involving short reaction times and relatively low temperatures enable the access to adenine end-capped polylactide in a simple one-step procedure, in bulk, without additional catalyst. DFT calculations show that the polymerization occurs via hydrogen bond catalysis. The mechanism involves (i) a hydrogen bond between the NH9 of adenine and the carbonyl moiety of lactide, leading to an electron deficient carbon atom, and (ii) a second hydrogen bond between the N3 of adenine and the NH2 of a second adenine molecule, followed by a nucleophilic attack of the latter activated amine on the former electron deficient carbon on the monomer. For longer reaction times and higher temperatures, macrocyclic species are formed, and a mechanism involving the imidazole ring of adenine is proposed based on literature studies. Depending on the reaction conditions, adenine can thus be considered as an organoinitiator or an organocatalyst for the ring-opening polymerization of lactide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of climate change can result in dramatic consequences in specific ecosystems such as montados that are seriously threatened by the absence of cork and holm oak (Quercus suber and Q. rotundifolia) natural regeneration. Shrubs of the genus Cistus, which are among the most important elements of encroached montados, seem to promote soil rehabilitation and enhance oak regeneration (Simões et al. 2009). In this context, we compared the life strategies and evaluated the potential ability of Cistus species to adapt to the increasing drought expected for the Mediterranean region, and thus their role on the sustainability of cork oak montados.