2 resultados para Randalls Island (N.Y.)--Maps, Topographic.
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Geophysical surveying and geoelectricalmethods are effective to study permafrost distribution and conditions in polar environments. Geoelectrical methods are particularly suited to study the spatial distribution of permafrost because of its high electrical resistivity in comparison with that of soil or rock above 0 °C. In the South Shetland Islands permafrost is considered to be discontinuous up to elevations of 20–40ma.s.l., changing to continuous at higher altitudes. There are no specific data about the distribution of permafrost in Byers Peninsula, in Livingston Island, which is the largest ice-free area in the South Shetland Islands. With the purpose of better understanding the occurrence of permanent frozen conditions in this area, a geophysical survey using an electrical resistivity tomography (ERT)methodologywas conducted during the January 2015 field season, combined with geomorphological and ecological studies. Three overlapping electrical resistivity tomographies of 78meach were done along the same profile which ran from the coast to the highest raised beaches. The three electrical resistivity tomographies are combined in an electrical resistivitymodel which represents the distribution of the electrical resistivity of the ground to depths of about 13malong 158m. Several patches of high electrical resistivity were found, and interpreted as patches of sporadic permafrost. The lower limits of sporadic to discontinuous permafrost in the area are confirmed by the presence of permafrost-related landforms nearby. There is a close correspondence between moss patches and permafrost patches along the geoelectrical transect.
Resumo:
This paper presents the determination of a mean solar radiation year and of a typical meteorological year for the region of Funchal in the Madeira Island, Portugal. The data set includes hourly mean and extreme values for air temperature, relative humidity and wind speed and hourly mean values for solar global and diffuse radiation for the period 2004-2014, with maximum data coverage of 99.7%. The determination of the mean solar radiation year consisted, in a first step, in the average of all values for each pair hour/day and, in a second step, in the application of a five days centred moving average of hourly values. The determination of the typical meteorological year was based on Finkelstein-Schafer statistics, which allows to obtain a complete year of real measurements through the selection and combination of typical months, preserving the long term averages while still allowing the analysis of short term events. The typical meteorological year validation was carried out through the comparison of the monthly averages for the typical year with the long term monthly averages. The values obtained were very close, so that the typical meteorological year can accurately represent the long term data series. The typical meteorological year can be used in the simulation of renewable energy systems, namely solar energy systems, and for predicting the energy performance of buildings.