4 resultados para Radiometric calibration

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os espectrómetros instalados a bordo de satélites e à superfície da Terra têm desempenhado um papel fundamental na compreensão da química e dinâmica da atmosfera e na monitorização da poluição ambiental. O SPATRAM (SPectrometer for Atmosferic TRAcers Measurements) é um espectrómetro ultravioleta – Visível que compreende a região espectral entre 250-950nm e se encontra instalado no Instituto de Ciências da Terra (ICT) desde Abril de 2004. Enquanto isso, em 2012, um novo modelo do instrumento SPATRAM foi desenvolvido no ICT e foi chamado SPATRAM2. O objectivo do trabalho proposto é a calibração radiométrica do espectrómetro SPATRAM2, utilizando uma lâmpada de halogéneo e uma esfera de integração. A calibração radiométrica do sistema SPATRAM2 permitirá obter a radiação solar directa, com alta resolução espectral, o que actualmente não se encontra disponível. Este tipo de medição poderá ter um papel importante na investigação e desenvolvimento na área da energia solar e aplicações; Radiometric Calibration of Spectrophotometric Optical Instrumentation Abstract: Spectrometers installed aboard satellites and located on Earth’s surface have played a fundamental role to understand atmosphere’s chemistry and dynamic and to monitor environmental pollution. The SPATRAM (SPectrometer for Atmosferic TRAcers Measurements) instrument is an ultraviolet spectrometer – visible that covers spectral region between 250-950nm and it is installed in Instituto de Ciências da Terra (Institute of Earth Sciencies), ICT, since April 2004. Meanwhile, in 2012, a new model of SPATRAM instrument was developed in ICT and was called SPATRAM2. The goal of this project is the radiometric calibration of the SPATRAM2 spectrometer using a halogen lamp and an integrating sphere. Radiometric calibration of SPATRAM2 system will provide direct solar radiation, with high spectral resolution, that is not available nowadays. This type of measurement may play an important role in solar energy’s progress and investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biophysical and meteorological variables as well as radiometric canopy temperatures were collected in an intensive orchard near Évora, Portugal, with 28% ground cover by canopy and combined in a simplified two-source energy balance model (STSEB) to independently calculate the olive tree transpiration (T_STSEB) component of the total evapotranspiration (ETc). Sap flow observations were simultaneously taken in the same orchard allowing also for independent calculations of tree transpiration (T_SF). Model water use results were compared with water use estimates from the sap flow measurements. Good agreement was observed (R2=0.86, RMSE=0.20 mm d-1), with an estimation average absolute error (AAE) of 0.17 mm d-1. From June to August, on average olive water use were 1.92 and 1.89 mm d-1 for sap flow and STSEB model respectively, and 1.38 and 1.58 mm d-1 for the month of September. Results were also used to assess the olive basal crop coefficients (Kcb). Kcb estimates of 0.33 were obtained for sap flow and STSEB model, respectively, for June to August, and of 0.44 and 0.53 for the month of September. Basal crop coefficients were lower than the suggested FAO56 average Kcb values of 0.65 for June to August, the crop mid-season growth stage, and of 0.65 for the month of September, the end-season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate assessment of standing pasture biomass in livestock production systems is a major factor for improving feed planning. Several tools are available to achieve this, including the GrassMaster II capacitance meter. This tool relies on an electrical signal, which is modified by the surrounding pasture. There is limited knowledge on how this capacitance meter performs in Mediterranean pastures. Therefore, we evaluated the GrassMaster II under Mediterranean conditions to determine (i) the effect of pasture moisture content (PMC) on the meter’s ability to estimate pasture green matter (GM) and dry matter (DM) yields, and (ii) the spatial variability and temporal stability of corrected meter readings (CMR) and DM in a bio-diverse pasture. Field tests were carried out with typical pastures of the southern region of Portugal (grasses, legumes, mixture and volunteer annual species) and at different phenological stages (and different PMC). There were significant positive linear relations between CMR and GM (r2 = 0.60, P < 0.01) and CMR and DM (r2 = 0.35, P < 0.05) for all locations (n = 347). Weak relationships were found for PMC (%) v. slope and coefficient of determination for both GM and DM. A significant linear relation existed for CMR v. GM and DM for PMC >80% (r2= 0.57, P < 0.01, RMSE = 2856.7 kg ha–1, CVRMSE=17.1% to GM; and r2= 0.51, P < 0.01,RMSE = 353.7 kg ha–1, CVRMSE = 14.3% to DM). Therefore, under the conditions of this current study there exists an optimum PMC (%) for estimating both GM and DM with the GrassMaster II. Repeated-measurements taken at the same location on different dates and conditions in a bio-diverse pasture showed similar and stable patterns between CMR and DM (r2= 0.67, P < 0.01, RMSE = 136.1 kg ha–1, CVRMSE = 6.5%). The results indicate that the GrassMaster II in-situ technique could play a crucial role in assessing pasture mass to improve feed planning under Mediterranean conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clouds are important in weather prediction, climate studies and aviation safety. Important parameters include cloud height, type and cover percentage. In this paper, the recent improvements in the development of a low-cost cloud height measurement setup are described. It is based on stereo vision with consumer digital cameras. The cameras positioning is calibrated using the position of stars in the night sky. An experimental uncertainty analysis of the calibration parameters is performed. Cloud height measurement results are presented and compared with LIDAR measurements.