2 resultados para RATE RESPONSE
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
This study’s main goal was to evaluate the thermoregulatory responses velocity through the variation of rectal temperature (RT), related to the thermolytic pathways, respiratory rate (RR) and sweating rate (SR) among different sheep breeds. Ninety female sheep, eighteen of each breed: Santa Ines and Morada Nova (Brazilian hair breeds), Texel, Suffolk and Ile de France (wool breeds) were challenged during three non-consecutive summer days (22◦42′S, 47◦18′W, and 570m of altitude, maximum air temperature of 33.5◦C, average relative humidity of 52±6.9%). The physiological variables were registered at 0800h (T1), 1300 h (T2: after 2 h of shade rest), 1400 h (T3) (after one hour of sun exposure) and in the shade at 1415 h (T4), 1430 h (T5), 1445 h (T6) and 1500 h (T7) and a thermotolerance index (TCI) was calculated as (10-(T7 to T4)-T1). The statistical analysis was performed by a mathematical model including the fixed effects of breeds and time frames, and the interaction between these effects, besides random effects such as animal and day. The Santa Ines breed presented the lowest RT after sun exposure (39.3 ± 0.12 ◦ C; P < 0.05) and it was the only one to recover morning RT 60 min after heat stress (38.7 and 38.9 for 1300 h and 1500 h; P > 0.05). Hair breeds presented RR lower (P < 0.05) than wool breeds. Although thick wool or hair thickness differs among and within hair and wool breeds (P < 0.05), SR did not differ among breeds and time (227.7 ± 16.44 g m−2 h−1 ; P > 0.05). The thermotolerance index did not differ among breeds, but it showed similar response (P > 0.05) 45 min or 1 h of shade after sun exposure. One week post shearing is not enough to wool breeds present to show thermotolerance similar to hair breeds.
Resumo:
Cork oak tree (Quercus suber L.), in Portugal, is considered the national tree and have special demands and legal protection when dealing with silviculture management (pruning, debarking, thinning). Being a species of slow growth, cork oak transplanting procedures can be a valuable asset either from the economic or ecological rationales to relocate trees, re-populate areas affected by high tree mortality, increase tree density to control erosion on montado ecosystems or landscape design. This study focuses the impacts and physiological responses of ten juvenile rain fed cork oak trees (with diameter at breast height between 6 and 16cm), when subjected to transplant operations. The work was conducted in a cork oak woodland experimental plot at the campus of the University of Évora (SW Portugal), during the year of 2015. Tree’s transplants were performed with a truck-mounted hydraulic spade transplanter coupled with a proposed methodology to maximize tree survival rates, addressing techniques to limit canopy transpiration and to improve root systems prior to transplant. Tree ecophysiological indicators (sap flow, leaf water potentials and stomatal conductance) were monitored comprising the periods before and after transplant operations, and water stress avoidance practices were established to promote post-transplant tree status recovery, including irrigation to match average daily accumulated sap flow. Transplant operations were considered successful when the tree's water uptake inferred from sap flow exhibited a high correlation with solar radiation and returned to its undisturbed or pre-transplant water potential gradients in the following 2 to 3 weeks. The post-transplant tree nourishment follow up included permanent sap flow measurements and identified the time elapsed after transplantation from which the tree recovers its normal transpiration thresholds and response. Our results suggest that by following the proposed methodology the sampled cork oak trees exhibited a transplant success rate of 90%.