2 resultados para Primaries.
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The Parabolic Trough (PT) is the most used concentrator in CSP (Concentrated Solar Power). However, this concentrator technology is facing a significant challenge to increase its overall efficiency and cost-effectiveness. Meanwhile, other low-cost solutions such as Fresnel concentrators are also being perceived as potentially attractive. In order to achieve the lower cost goal, new optical solutions can be considered, in parallel with improvements coming, for instance, through the use of new materials or manufacturing solutions. But conventional PTs can still be improved to yield, for instance, higher concentration values, a possible starting point for higher conversion efficiency. These new solutions, in turn, can also be useful for other technologies and applications (Fresnel Concentrators, Central Tower Receivers, etc.). However it is easier to develop and test these solutions in conjunction with parabolic primaries (continuum primary). And that is the topic of this paper: to present a new Compound Elliptical-type Concentrator for a parabolic primary with a tubular receiver. A comparison is made between this new concentrator and two other concentrators (a conventional PT concentrator and a XX SMS (Simultaneous Multiple Surface) concentrator), as well as a calculation of the total amount of collected energy (kW h) for a particular location, Faro (Portugal). The paper ends with a discussion of the results obtained, their impact and possible applications in the future.
Resumo:
Given their central role in mercury (Hg) excretion and suitability as reservoirs, bird feathers are useful Hg biomonitors. Nevertheless, the interpretation of Hg concentrations is still questioned as a result of a poor knowledge of feather physiology and mechanisms affecting Hg deposition. Given the constraints of feather availability to ecotoxicological studies, we tested the effect of intraindividual differences in Hg concentrations according to feather type (body vs. flight feathers), position in the wing and size (mass and length) in order to understand how these factors could affect Hg estimates. We measured Hg concentration of 154 feathers from 28 un-moulted barn owls (Tyto alba), collected dead on roadsides. Median Hg concentration was 0.45 (0.076–4.5) mg kg-1 in body feathers, 0.44 (0.040–4.9) mg kg-1 in primary and 0.60 (0.042–4.7) mg kg-1 in secondary feathers, and we found a poor effect of feather type on intra-individual Hg levels. We also found a negative effect of wing feather mass on Hg concentration but not of feather length and of its position in the wing. We hypothesize that differences in feather growth rate may be the main driver of between-feather differences in Hg concentrations, which can have implications in the interpretation of Hg concentrations in feathers. Finally, we recommend that, whenever possible, several feathers from the same individual should be analysed. The five innermost primaries have lowest mean deviations to both betweenfeather and intra-individual mean Hg concentration and thus should be selected under restrictive sampling scenarios.