2 resultados para Porous carbon

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the activated carbon (AC) production, we used the most common industrial and consumer solid waste, namely polyethyleneterephthalate (PET), alone or blended with other synthetic polymer such polyacrylonitrile (PAN). By mixing PET, with PAN, an improvement in the yield of the AC production was found and the basic character and some textural and chemical properties were enhanced. The PET–PAN mixture was subjected to carbonisation, with a pyrolysis yield of 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. The AC revealed a high surface area (1400, 1230 and 1117 m2 g−1) and pore volume (0.46, 0.56 and 0.50 cm3 g−1), respectively, for PET, PAN and PET–PAN precursors. Selected ACs were successfully tested for 4- chloro-2-methylphenoxyacetic acid (MCPA) and diuron removal from the liquid phase, showing a higher adsorption capacity (1.7 and 1.2 mmol g−1, respectively, for MCPA and diuron) and good fits with the Langmuir (PET) and Freundlich equation (PAN and PET–PAN blend). With MCPA, the controlling factor to the adsorption capacity was the porous volume and the average pore size. Concerning diuron, the adsorption was controlled essentially by the external diffusion. A remarkable result is the use of different synthetic polymers wastes, as precursors for the production of carbon materials, with high potential application on the pesticides removals from the liquid phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activated carbon (AC) has proved to be an effective adsorbent for the removal of an assortment of organic and inorganic pollutants from aqueous or gaseous media. However, the pursuit for more effective and cheaper AC is still very active and a diversity of textural and chemical treatments are described as a way to expand their applications. It is well known that the surface area and surface chemistry of AC strongly affect their adsorption capacity [1-3]. In particular, an increase in the nitrogen content has been related to an increase of the basic character and also to the development of the porous structure. In most published work this was achieved through an AC post treatment, including either a reaction with nitrogen containing reagents, such as ammonia, nitric acid, or a diversity of amines. However, the AC prepared directly from a nitrogen rich precursor through a physical or chemical activation is referred to as presenting the best characteristics, namely high nitrogen content, high basic character, low nitrogen leaching and also a good thermal stability [4]. To improve the AC adsorption capacities for acidic pesticide removal from the aqueous phase, we intend to improve the porous structure and introduce nitrogenated groups directly into the AC matrix, using different co-adjuvant activating agents as a nitrogen source, by chemical activation, with potassium hydroxide, of cork or poly(ethyleneterephthalate) (PET) precursors.