4 resultados para Physiological parameters
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
SHORT-TERM EFFECTS OF SALINITY ON SOME PHYSIOLOGICAL PARAMETERS OF YOUNG OLIVE TREES OF ARBEQUINA, COBRANÇOSA AND GALEGA VARIETIES Ana Elisa Rato1,4, Renato Coelho1, Margarida Vaz1, Teresa Carola2, Dália Barbosa2, Nádia Silva1, José dos Santos2, Lourenço Machado2, João Godinho2, Luzia Ruas2, Margarida Barradas2, Hernani Pereira2, Sara Porfírio4 1 ICAAM, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal 2 Master students, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal 3 Ph.D. student, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal 4 aerato@uevora.pt Due to the desertification in some regions, the interest in plant’s tolerance to salinity has been increasing, as this response is determining for plant survival in stress conditions. This work reports the investigation of tolerance to salt in two year-old olive trees (Olea europaea L.) of three varieties, Arbequina, Cobrançosa and Galega vulgar. Plants were grown in 10 L plastic pots containing approximately 9 Kg of a sandy granitic soil, on a greenhouse. For 3 months (from the beginning of February to the end of April 2012), they were subjected to three levels of salinity in the irrigation water, 0 mM, 80 mM and 200 mM NaCl (6 plants per salinity level in a total of 18 plants of each variety),. Stomatal conductance (gs) and relative leaf chlorophyll content were assessed on each plant in February, March and April. Mid-day leaf water potential () and soil salinity were measured at the end of the experiment (April). On average, concerning all treatments and dates of determination, stomatal conductance of Arbequina and Galega vulgar was quite similar, around 40 mmol m-2 s-1, but Cobrançosa had a value of gs 36% higher, almost 50% higher (61 mmol m-2 s-1) when compared with the controls (0 mM salt) of the other two varieties. In percentage of controls, there was little difference in gs between varieties and between salinities during February and March. In contrast, in April, after about 90 days of exposure to salt, there was a clear decrease in gs with salt irrigation, proportional to salt concentration. Compared with controls, plants irrigated with 200 mM salt showed around 80% (Arbequina) or 85% (Cobrançosa and Galega vulgar) decrease in gs. Chlorophyll content of leaves showed less than 5% difference between varieties on the average of all treatments and dates of determination. During the course of this experiment, the salinity levels used did not show any relevant effect on chlorophyll content. Overall, at the end of the experimental period (April), leaf water potential () at midday was significantly higher in Cobrançosa (-1,4 MPa) than in Galega vulgar (-1,7 MPa) or Arbequina (-1,8 MPa), and salt decreased of control plants (-1,25 MPa) by an average 30% (with 80 mM) and 65% (with 200 mM). At the end of the experiment, salinity in the soil irrigated with 0 mM, 80 mM or 200 mM NaCl was, on average of all varieties, 0,2 mS, 1,0 mS or 2,0 mS, respectively. Soil salinity was quite similar in Arbequina and Galega vulgar but about 35% lower in the pots of Cobrançosa, on average of all salt-irrigation levels. Plants of Cobrançosa had higher stomatal conductance, however they showed higher water potential and lower salinity in the soil. These apparently contradictory results seem to suggest that Cobrançosa responds to salt differently from the other two varieties. This issue needs further investigation.
Resumo:
At Mediterranean regions and particularly in southern Portugal, it is imperative to identify grape varieties more adapted to warm and dry climates in order to overcome future climatic changes. Two Vitis vinifera genotypes, Aragonez (syn. Tempranillo) and Trincadeira, were selected to assess their physiological responses to soil water stress. Vines were subjected to four irrigation regimes: irrigated during all phenological cycle, non-irrigated during all phenological cycle, non irrigated until veraison, irrigated after veraison. Predawn leaf water potential was much higher in Trincadeira than Aragonez in non- irrigated plants. This result is in accordance with its higher stomatal control efficiency in this variety (Trincadeira). Photosynthetic capacity (Amax at saturating light intensity) decreased due to stomatal and biochemical limitations under water stress. However, recovery capacity of leaf water status after irrigation was faster in Trincadeira. Yield and yield x Brix increased when irrigation occurred after veraison, particularly in Trincadeira. These results show that Trincadeira presents a drought adaptation than Aragonez. Ratio of variable to maximum fluorescence Fv/Fm and total leaf chlorophyll related with leaf water potential for both species. Reflectance Normalized Difference Vegetation Index (NDVI705), Red Edge Inflexion Point Index and Photochemical Reflectance Index were related with irrigation treatment. Relative water content and specific leaf area were similar between varieties. In conclusion, we suggested that there is variation among the genotypes and the main physiological parameters for variety selection, for drought, were leaf water potential, stomatal conductance and reflectance indexes.
Resumo:
Water deficit is the most limiting factor for yield and fruit-quality parameters in papaya crop (Carica papaya L.), deficit-irrigation (DI) strategies offering a feasible alternative to manage limiting water resources. When DI is applied, it is crucial to assess the physiological status of the crop in order to maintain the plant within a threshold value of water stress so as no to affect yield or fruit-quality parameters. The aim of this work was to evaluate the feasibility of thermal imaging in young papaya plants to assess the physiological status of this crop when it is subjected to different DI regimes, studying the relationships between the changes in leaf temperature (Tleaf) and in the major physiological parameters (i.e., stomatal conductance to water vapor, gs; transpiration, E; and net photosynthesis, An). The trial was conducted in a greenhouse from March to April of 2012. Plants were grown in pots and subjected to four irrigation treatments: (1) a full irrigation treatment (control), maintained at field capacity; (2) a partial root-zone drying treatment, irrigated with 50% of the total water applied to control to only one side of roots, alternating the sides every 7 days; (3) a regulated deficit irrigation (50% of the control, applied to both sides of plant); (4) and a non-irrigated treatment, in which irrigation was withheld from both sides of the split root for 14 days, followed by full irrigation until the end of the study. Significant relationships were found between Tleaf and major physiological variables such as gs, E and An. Additionally, significant relationships were found between the difference of leaf-to-air temperature (ΔTleaf–air) and gas-exchange measurements, which were used to establish the optimum range of ΔTleaf–air as a preliminary step to the crop-water monitoring and irrigation scheduling in papaya, using thermal imaging as the main source of information. According to the results, we conclude that thermal imaging is a promising technique to monitor the physiological status of papaya during drought conditions.
Resumo:
Water deficit is the most limiting factor for yield and fruit-quality parameters in papaya crop (Carica papaya L.), deficit-irrigation (DI) strategies offering a feasible alternative to manage limiting water resources. When DI is applied, it is crucial to assess the physiological status of the crop in order to maintain the plant within a threshold value of water stress so as no to affect yield or fruit-quality parameters. The aim of this work was to evaluate the feasibility of thermal imaging in young papaya plants to assess the physiological status of this crop when it is subjected to different DI regimes, studying the relationships between the changes in leaf temperature (Tleaf) and in the major physiological parameters (i.e., stomatal conductance to water vapor, gs; transpiration, E; and net photosynthesis, An). The trial was conducted in a greenhouse from March to April of 2012. Plants were grown in pots and subjected to four irrigation treatments: (1) a full irrigation treatment (control), maintained at field capacity; (2) a partial root-zone drying treatment, irrigated with 50% of the total water applied to control to only one side of roots, alternating the sides every 7 days; (3) a regulated deficit irrigation (50% of the control, applied to both sides of plant); (4) and a non-irrigated treatment, in which irrigation was withheld from both sides of the split root for 14 days, followed by full irrigation until the end of the study. Significant relationships were found between Tleaf and major physiological variables such as gs, E and An. Additionally, significant relationships were found between the difference of leaf-to-air temperature (ΔTleaf–air) and gas-exchange measurements, which were used to establish the optimum range of ΔTleaf–air as a preliminary step to the crop-water monitoring and irrigation scheduling in papaya, using thermal imaging as the main source of information. According to the results, we conclude that thermal imaging is a promising technique to monitor the physiological status of papaya during drought conditions.