8 resultados para Peruvian carrot varieties
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
SHORT-TERM EFFECTS OF SALINITY ON SOME PHYSIOLOGICAL PARAMETERS OF YOUNG OLIVE TREES OF ARBEQUINA, COBRANÇOSA AND GALEGA VARIETIES Ana Elisa Rato1,4, Renato Coelho1, Margarida Vaz1, Teresa Carola2, Dália Barbosa2, Nádia Silva1, José dos Santos2, Lourenço Machado2, João Godinho2, Luzia Ruas2, Margarida Barradas2, Hernani Pereira2, Sara Porfírio4 1 ICAAM, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal 2 Master students, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal 3 Ph.D. student, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal 4 aerato@uevora.pt Due to the desertification in some regions, the interest in plant’s tolerance to salinity has been increasing, as this response is determining for plant survival in stress conditions. This work reports the investigation of tolerance to salt in two year-old olive trees (Olea europaea L.) of three varieties, Arbequina, Cobrançosa and Galega vulgar. Plants were grown in 10 L plastic pots containing approximately 9 Kg of a sandy granitic soil, on a greenhouse. For 3 months (from the beginning of February to the end of April 2012), they were subjected to three levels of salinity in the irrigation water, 0 mM, 80 mM and 200 mM NaCl (6 plants per salinity level in a total of 18 plants of each variety),. Stomatal conductance (gs) and relative leaf chlorophyll content were assessed on each plant in February, March and April. Mid-day leaf water potential () and soil salinity were measured at the end of the experiment (April). On average, concerning all treatments and dates of determination, stomatal conductance of Arbequina and Galega vulgar was quite similar, around 40 mmol m-2 s-1, but Cobrançosa had a value of gs 36% higher, almost 50% higher (61 mmol m-2 s-1) when compared with the controls (0 mM salt) of the other two varieties. In percentage of controls, there was little difference in gs between varieties and between salinities during February and March. In contrast, in April, after about 90 days of exposure to salt, there was a clear decrease in gs with salt irrigation, proportional to salt concentration. Compared with controls, plants irrigated with 200 mM salt showed around 80% (Arbequina) or 85% (Cobrançosa and Galega vulgar) decrease in gs. Chlorophyll content of leaves showed less than 5% difference between varieties on the average of all treatments and dates of determination. During the course of this experiment, the salinity levels used did not show any relevant effect on chlorophyll content. Overall, at the end of the experimental period (April), leaf water potential () at midday was significantly higher in Cobrançosa (-1,4 MPa) than in Galega vulgar (-1,7 MPa) or Arbequina (-1,8 MPa), and salt decreased of control plants (-1,25 MPa) by an average 30% (with 80 mM) and 65% (with 200 mM). At the end of the experiment, salinity in the soil irrigated with 0 mM, 80 mM or 200 mM NaCl was, on average of all varieties, 0,2 mS, 1,0 mS or 2,0 mS, respectively. Soil salinity was quite similar in Arbequina and Galega vulgar but about 35% lower in the pots of Cobrançosa, on average of all salt-irrigation levels. Plants of Cobrançosa had higher stomatal conductance, however they showed higher water potential and lower salinity in the soil. These apparently contradictory results seem to suggest that Cobrançosa responds to salt differently from the other two varieties. This issue needs further investigation.
Resumo:
Transpiration of two year-old olive trees of three different varieties, Arbequina, Cobrançosa and Galega (18 trees per variety), irrigated with three levels of salt (0, 80 or 200 mM NaCl) for about 90 days, was measured by a gravimetric method. To determine leaf area, each tree was photographed from the side against a white background and the total area of each projected image was determined with ImageJ software. To calibrate these area determinations, one tree of each variety was subsequently stripped of all its leaves and its total leaf area was accurately measured. A correlation was then obtained between the area on the photograph of this particular tree and the total area of the detached leaves of the same tree. Using the leaf area determined by this procedure, transpiration rates of the trees could be calculated. Knowing leaf and air temperatures and RH, it was possible to determine the difference in molar fraction of water between the leaf and the air. Using this and the values of the transpiration rate, stomatal conductance could be calculated (gs calc) and compared with the conductance measured on the same trees with a porometer (gs). Actual leaf area of a plant was 1,40 (Arbequina), 1,42 (Cobrançosa) or 1,24 (Galega) times the area measured with ImageJ on the photograph of the same plant. Leaf area of the trees, on average of all salt irrigations, was significantly higher on Arbequina (0,187 m2) then on the other two varieties (0,138 m2 or 0,148 m2, for Cobrançosa or Galega, respectively), but did not differ significantly in percentage of controls (0 salt). On average of all three varieties, leaf area was also higher on plants irrigated without salt (0,181 m2) than on plants exposed to 80 or 200 mM NaCl (0,152 m2 or 0,140 m2, respectively), which did not differ between them. The same significant difference was observed when leaf area was expressed as percentage of controls. Transpiration rate was significantly higher on Cobrançosa (1,17 mmol m-2 s-1), on average of all treatments, but there were no significant differences between Arbequina (1,08 mmol m-2 s-1) and Galega (0,82 mmol m-2 s-1). In percentage of controls, there were no significant differences between varieties. Salt reduced significantly the transpiration rate in all varieties, both the actual and percentual values, to about 50% or 30% of controls when exposed to 80 mM or 200 mM NaCl, respectively. Stomatal conductance (gs), assessed by porometry, was significantly higher in control plants, mainly in Cobrançosa (102 mmol m-2 s-1), then in Arbequina (77 mmol m-2 s-1) and the lower values were found in Galega (51 mmol m-2 s-1). Salt reduced gs, on average of the three varieties to 30% or 10% of controls on exposure to 80 mM or 200 mM NaCl, respectively. Calculated (gs calc) and measured (gs) values of stomatal conductance showed a close relation between them (0,967, R2 = 0,837) which indicates this non-destructive method to determine whole-plant leaf area to be reasonably accurate.
Resumo:
Soil salinization is a problem in the Mediterranean region. This paper reports a research on the response to salt in two year-old olive trees (Olea europaea L.) of three Iberian varieties: Arbequina, Cobrançosa and Galega Vulgar. Plants were grown in plastic pots containing approximately 9 Kg of a sandy granitic soil, on a greenhouse at the University of Évora since February 2010. The experiment went from February to April 2012. As a rule, plants were watered every other day alternating salt solution (0 mM, 80 mM or 200 mM NaCl) or tap water. After three months irrigation with the different NaCl solutions, soil electric conductivity and soil water content were significantly higher on salt-irrigated pots. Salt also decreased significantly stomatal conductance (gs) and mid-day leaf water potential (), Cobrançosa having in general higher gs and but lower SLA than the two other varieties. Chlorophyll content of leaves was not affected by salt after this three months exposure to NaCl but was significantly higher on Arbequina and lower on Cobrançosa. In general, hyperspectral reflectance indexes did not show significant correlations with salt irrigation, except for the Photochemical Reflectance Index (PRI) which was clearly lower on plants of all three varieties irrigated with salt. Interestingly, Cobrançosa showed frequently vegetation indexes different from the other two varieties.
Resumo:
A presente tese explora a hipótese de utilização dos genes da oxidase alternativa (AOX) e da oxidase terminal da plastoquinona (PTOX) como genes-alvo para o desenvolvimento de marcadores funcionais (MF) para avaliar a performance do crescimento em cenoura, fator determinante da produtividade. Para avaliar se os referidos genes estão associados com o crescimento da cenoura procedeu—se ao seu isolamento e posterior análise dos seus perfis de transcrição em diversos sistemas biológicos. O sistema in vitro selecionado, denominado sistema de culturas primárias, permitiu avaliar alterações na quantidade de transcritos desses genes durante os processos de reprogramação celular e crescimento. Ao nível da planta foi também estudado o efeito do frio na expressão precoce dos genes AOX. Ambos os genes DcAOX1 e DcAOX2a revelaram uma resposta rápida e um padrão semelhante apos stresse (inoculação in vitro e resposta ao frio). Foi igualmente verificado um incremento na expressão do gene DcPTOX durante a fase inicial do processo de reprogramação celular. Estudos de expressão dos genes AOX durante o desenvolvimento da raiz da cenoura revelaram que o gene DcAOX2a será potencialmente o gene mais envolvido neste processo. De modo a avaliar a hipótese de envolvimento do gene DcPTOX no crescimento da raíz procederam—se a estudos de expressão ao nível do tecido meristemático. Todavia, para um mais completo entendimento da ligação entre DcPTOX e o crescimento secundário e/ou acumulação de carotenos, a expressão do gene DcPTOX foi também avaliada em raízes de cenoura durante o desenvolvimento, utilizando cultivares caracterizadas por distintos conteúdos de carotenos. Os resultados obtidos demonstraram a associação do gene DcPTOX a ambos os processos. O envolvimento da PTOX no crescimento adaptativo da raiz foi analisado com um ensaio que permitiu identificar, no tecido meristemático, uma resposta precoce do gene DcPTOX face a uma diminuição da temperatura. Adicionalmente, foi efetuada a seleção de genes de referência para uma analise precisa da expressão génica por RT-qPCR em diversos sistemas biológicos de cenoura, e a importância do seu estudo ao nível do sistema biológico foi realçada. Os resultados desta tese são encorajadores para prosseguir os estudos de utilização dos genes AOX e PTOX como MF no melhoramento da performance do crescimento adaptativo em cenoura, fator determinante para a produtividade; ABSTRACT: This thesis explores the hypothesis of using the alternative oxidase (AOX) and theplastid terminal oxidase (PTOX) as target genes for functional marker (FM) development for yield-determining growth performance in carrot. To understand if these genes are associated to growth, different AOX gene family members and the single PTOX gene were isolated, and their expression patterns evaluated in diverse carrot plant systems. An in-vitro primary culture system was selected to study AOX and PTOX transcript changes during cell reprogramming and growth performance. At plant level, a putative early response of AOX to chilling was also evaluated. In fact, both DcAOXl and DcAOXZa were early responsive and showed similar patterns under stress conditions (in vitro inoculation and chilling). A role for DcPTOX during earliest events of cell reprogramming was also suggested. Next, the expression profiles of AOX gene family members during carrot tap root development were investigated. DcAOXZa was identified as the most responsive gene to root development. In order to evaluate if DcPTOX is associated with carrot tap root growth performance, DcPTOX transcript levels were measured in the central root meristem. To further understand whether DcPTOX is associated with secondary growth and/or carotenoids accumulation, DcPTOX expression was also studied in deveIOping carrot tap roots in cultivars with different carotenoids contents. The results indicated that DcPTOX associates to both carotenoid biosynthesis and secondary growth during storage root development. To obtain further insights into the involvement of PTOX on adaptive growth, the early effects of temperature decrease were explored in the root meristem, where a short—term early response in DcPTOX was found, probably associated with adaptive growth. Furthermore, a selection of the most suitable reference genes for accurate RT—qPCR analysis in several carrot experimental systems was performed and discussed. The present research provides the necessary toolbox for continuing studies in carrot AOX and PTOX genes as promising resources for FM candidates in order to assist breeding on yield—determining adaptive growth performance.
Resumo:
Carrot (Daucus carota L.) is a biennial plant that accumulates considerable amounts of carotenoid pigments in the storage root. To better understand the molecular mechanisms for carotenoid accumulation in developing storage roots, plastid terminal oxidase (PTOX) cDNA was isolated and selected for reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Present in photosynthetic species, PTOX is a plastid-located, nucleus encoded plastoquinone (PQ)-O2 oxidoreductase (plastioquinol oxidase). The enzyme is known to play a role as a cofactor for phytoene desaturase, and consequently plays a key role in the carotenoid biosynthesis pathway. A single PTOX gene was identified (DcPTOX) in carrot. DcPTOX encodes a putative protein with 366 amino acids that contains the typical structural features of PTOXs from higher plants. The expression of DcPTOX was analysed during the development of white, yellow, orange, red, and purple carrot roots, along with five genes known to be involved in the carotenoid biosynthesis pathway, PSY2, PDS, ZDS1, LCYB1, and LCYE. Expression analysis revealed the presence of DcPTOX transcripts in all cultivars, and an increase of transcripts during the time course of the experiment, with differential expression among cultivars in early stages of root growth. Our results demonstrated that DcPTOX showed a similar profile to that of other carotenoid biosynthetic genes with high correlation to all of them. The preponderant role of PSY in the biosynthesis of carotenoid pigments was also confirmed.
Resumo:
At Mediterranean regions and particularly in southern Portugal, it is imperative to identify grape varieties more adapted to warm and dry climates in order to overcome future climatic changes. Two Vitis vinifera genotypes, Aragonez (syn. Tempranillo) and Trincadeira, were selected to assess their physiological responses to soil water stress. Vines were subjected to four irrigation regimes: irrigated during all phenological cycle, non-irrigated during all phenological cycle, non irrigated until veraison, irrigated after veraison. Predawn leaf water potential was much higher in Trincadeira than Aragonez in non- irrigated plants. This result is in accordance with its higher stomatal control efficiency in this variety (Trincadeira). Photosynthetic capacity (Amax at saturating light intensity) decreased due to stomatal and biochemical limitations under water stress. However, recovery capacity of leaf water status after irrigation was faster in Trincadeira. Yield and yield x Brix increased when irrigation occurred after veraison, particularly in Trincadeira. These results show that Trincadeira presents a drought adaptation than Aragonez. Ratio of variable to maximum fluorescence Fv/Fm and total leaf chlorophyll related with leaf water potential for both species. Reflectance Normalized Difference Vegetation Index (NDVI705), Red Edge Inflexion Point Index and Photochemical Reflectance Index were related with irrigation treatment. Relative water content and specific leaf area were similar between varieties. In conclusion, we suggested that there is variation among the genotypes and the main physiological parameters for variety selection, for drought, were leaf water potential, stomatal conductance and reflectance indexes.
Resumo:
By definition, the domestication process leads to an overall reduction of crop genetic diversity. This lead to the current search of genomic regions in wild crop relatives (CWR), an important task for modern carrot breeding. Nowadays massive sequencing possibilities can allow for discovery of novel genetic resources in wild populations, but this quest could be aided by the use of a surrogate gene (to first identify and prioritize novel wild populations for increased sequencing effort). Alternative oxidase (AOX) gene family seems to be linked to all kinds of abiotic and biotic stress reactions in various organisms and thus have the potential to be used in the identification of CWR hotspots of environment-adapted diversity. High variability of DcAOX1 was found in populations of wild carrot sampled across a West-European environmental gradient. Even though no direct relation was found with the analyzed climatic conditions or with physical distance, population differentiation exists and results mainly from the polymorphisms associated with DcAOX1 exon 1 and intron 1. The relatively high number of amino acid changes and the identification of several unusually variable positions (through a likelihood ratio test), suggests that DcAOX1 gene might be under positive selection. However, if positive selection is considered, it only acts on some specific populations (i.e. is in the form of adaptive differences in different population locations) given the observed high genetic diversity. We were able to identify two populations with higher levels of differentiation which are promising as hot spots of specific functional diversity.
Resumo:
The flavonoids (including anthocyanins) are wine compounds with important anti-oxidant activity, protecting the cells against oxidative processes, preventing cardiovascular and neurodegenerative diseases, cancer, among others (Antoniolli et al. 2015; Castañeda-Ovando et al. 2009; Hosu et al. 2014; Huang et al. 2009; Kong et al. 2003). Anthocyanins in grapes at harvest are determinant to red wine quality and their development in the grape must be characterised in order to determine the most suitable date for the harvest. Thus the aim of this research is the evaluation of anthocyanins composition in two red wine grape varieties from véraison continuing through ripening. Anthocyanins were quantified by high resolution liquid chromatography (HPLC-DAD). Additionally, the total phenols content were quantified by UV-Vis Spectrometry. The anthocyanins’ profile evolution may be dependent on the variety and ripening phase. During ripening grape samples have shown an increase of coumaryl derivatives. This information may lead us to understand the anthocyanins biosynthesis pathway in different grape varieties. The development of anthocyanins from the véraison seems to follow a pattern that coincides with the increasing accumulation of soluble sugars.