4 resultados para Parasitic fungi
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The aim of this study is to understand the biological role of Serratia quinivorans BXF1, a bacterium commonly found associated with Bursaphelenchus xylophilus, the plant parasitic nematode responsible for pine wilt disease. Therefore, we studied strain BXF1 effect in pine wilt disease. We found that strain BXF1 promoted in vitro nematode reproduction. Moreover, the presence of bacteria led to the absence of nematode chitinase gene (Bxcht-1) expression, suggesting an effect for bacterial chitinase in nematode reproduction. Nevertheless, strain BXF1 was unable to colonize the nematode interior, bind to its cuticle with high affinity or protect the nematode from xenobiotic stress. Interestingly, strain BXF1 was able to promote tomato and pine plant-growth, as well as to colonize its interior, thus, acting like a plant-growth promoting endophyte. Consequently, strain BXF1 failed to induce wilting symptoms when inoculated in pine shoot artificial incisions. This bacterium also presented strong antagonistic activities against fungi and bacteria isolated from Pinus pinaster. Our results suggest that B. xylophilus does not possess a strict symbiotic community capable of inducing pine wilt disease symptoms as previously hypothesized. We show that bacteria like BXF1, which possess plant-growth promoting and antagonistic effects, may be opportunistically associated with B. xylophilus, possibly acquired from the bacterial endophytic community of the host pine.
Resumo:
Filamentous fungi are a threat to the conservation of Cultural Heritage. Thus, detection and identification of viable filamentous fungi are crucial for applying adequate Safeguard measures. RNA-FISH protocols have been previously applied with this aim in Cultural Heritage samples. However, only hyphae detection was reported in the literature, even if spores and conidia are not only a potential risk to Cultural Heritage but can also be harmful for the health of visitors, curators and restorers. Thus, the aim of this work was to evaluate various permeabilizing strategies for their application in the detection of spores/conidia and hyphae of artworks’ biodeteriogenic filamentous fungi by RNA-FISH. Besides of this, the influence of cell aging on the success of the technique and on the development of fungal autofluorescence (that could hamper the RNA-FISH signal detection) were also investigated. Five common biodeteriogenic filamentous fungi species isolated from biodegradated artworks were used as biological model: Aspergillus niger, Cladosporium sp, Fusarium sp, Penicillium sp. and Exophialia sp. Fungal autofluorescence was only detected in cells harvested from Fusarium sp, and Exophialia sp. old cultures, being aging-dependent. However, it was weak enough to allow autofluorescence/RNA-FISH signals distinction. Thus, autofluorescence was not a limitation for the application of RNA-FISH for detection of the taxa investigated. All the permeabilization strategies tested allowed to detect fungal cells from young cultures by RNA-FISH. However, only the combination of paraformaldehyde with Triton X-100 allowed the detection of conidia/spores and hyphae of old filamentous fungi. All the permeabilization strategies failed in the Aspergillus niger conidia/spores staining, which are known to be particularly difficult to permeabilize. But, even in spite of this, the application of this permeabilization method increased the analytical potential of RNA FISH in Cultural Heritage biodeterioration. Whereas much work is required to validate this RNA-FISH approach for its application in real samples from Cultural Heritage it could represent an important advance for the detection, not only of hyphae but also of spores and conidia of various filamentous fungi taxa by RNA-FISH.
Resumo:
Background: Pine wilt disease (PWD) is a worldwide threat to pine forests, and is caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Bacteria are known to be associated with PWN and may have an important role in PWD. Serratia sp. LCN16 is a PWN-associated bacterium, highly resistant to oxidative stress in vitro, and which beneficially contributes to the PWN survival under these conditions. Oxidative stress is generated as a part of the basal defense mechanism used by plants to combat pathogenic invasion. Here, we studied the biology of Serratia sp. LCN16 through genome analyses, and further investigated, using reverse genetics, the role of two genes directly involved in the neutralization of H2O2, namely the H2O2 transcriptional factor oxyR; and the H2O2-targeting enzyme, catalase katA. Results: Serratia sp. LCN16 is phylogenetically most closely related to the phytosphere group of Serratia, which includes S. proteamaculans, S. grimessi and S. liquefaciens. Likewise, Serratia sp. LCN16 shares many features with endophytes (plant-associated bacteria), such as genes coding for plant polymer degrading enzymes, iron uptake/ transport, siderophore and phytohormone synthesis, aromatic compound degradation and detoxification enzymes. OxyR and KatA are directly involved in the high tolerance to H2O2 of Serratia sp. LCN16. Under oxidative stress, Serratia sp. LCN16 expresses katA independently of OxyR in contrast with katG which is under positive regulation of OxyR. Serratia sp. LCN16 mutants for oxyR (oxyR::int(614)) and katA (katA::int(808)) were sensitive to H2O2 in relation with wild-type, and both failed to protect the PWN from H2O2-stress exposure. Moreover, both mutants showed different phenotypes in terms of biofilm production and swimming/swarming behaviors. Conclusions: This study provides new insights into the biology of PWN-associated bacteria Serratia sp. LCN16 and its extreme resistance to oxidative stress conditions, encouraging further research on the potential role of this bacterium in interaction with PWN in planta environment.
Resumo:
We have previously identified two secreted glutathione S-transferases (GST) expressed in the pharyngeal gland cell of Bursaphelenchus xylophilus, which are upregulated post infection of the host. This study examines the functional role of GSTs in B. xylophilus biology. We analysed the expression profiles of all predicted GSTs in the genome and the results showed that they belong to kappa and cytosolic subfamilies and the majority are upregulated post infection of the host. A small percentage is potentially secreted and none is downregulated post infection of the host. One secreted protein was confirmed as a functional GST and is within a cluster that showed the highest expression fold change in infection. This enzyme has a protective activity that may involve host defences, namely in the presence of terpenoid compounds and peroxide products. These results suggest that GSTs secreted into the host participate in the detoxification of host-derived defence compounds and enable successful parasitism.