4 resultados para Papaya ripening
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Water deficit is the most limiting factor for yield and fruit-quality parameters in papaya crop (Carica papaya L.), deficit-irrigation (DI) strategies offering a feasible alternative to manage limiting water resources. When DI is applied, it is crucial to assess the physiological status of the crop in order to maintain the plant within a threshold value of water stress so as no to affect yield or fruit-quality parameters. The aim of this work was to evaluate the feasibility of thermal imaging in young papaya plants to assess the physiological status of this crop when it is subjected to different DI regimes, studying the relationships between the changes in leaf temperature (Tleaf) and in the major physiological parameters (i.e., stomatal conductance to water vapor, gs; transpiration, E; and net photosynthesis, An). The trial was conducted in a greenhouse from March to April of 2012. Plants were grown in pots and subjected to four irrigation treatments: (1) a full irrigation treatment (control), maintained at field capacity; (2) a partial root-zone drying treatment, irrigated with 50% of the total water applied to control to only one side of roots, alternating the sides every 7 days; (3) a regulated deficit irrigation (50% of the control, applied to both sides of plant); (4) and a non-irrigated treatment, in which irrigation was withheld from both sides of the split root for 14 days, followed by full irrigation until the end of the study. Significant relationships were found between Tleaf and major physiological variables such as gs, E and An. Additionally, significant relationships were found between the difference of leaf-to-air temperature (ΔTleaf–air) and gas-exchange measurements, which were used to establish the optimum range of ΔTleaf–air as a preliminary step to the crop-water monitoring and irrigation scheduling in papaya, using thermal imaging as the main source of information. According to the results, we conclude that thermal imaging is a promising technique to monitor the physiological status of papaya during drought conditions.
Resumo:
Water deficit is the most limiting factor for yield and fruit-quality parameters in papaya crop (Carica papaya L.), deficit-irrigation (DI) strategies offering a feasible alternative to manage limiting water resources. When DI is applied, it is crucial to assess the physiological status of the crop in order to maintain the plant within a threshold value of water stress so as no to affect yield or fruit-quality parameters. The aim of this work was to evaluate the feasibility of thermal imaging in young papaya plants to assess the physiological status of this crop when it is subjected to different DI regimes, studying the relationships between the changes in leaf temperature (Tleaf) and in the major physiological parameters (i.e., stomatal conductance to water vapor, gs; transpiration, E; and net photosynthesis, An). The trial was conducted in a greenhouse from March to April of 2012. Plants were grown in pots and subjected to four irrigation treatments: (1) a full irrigation treatment (control), maintained at field capacity; (2) a partial root-zone drying treatment, irrigated with 50% of the total water applied to control to only one side of roots, alternating the sides every 7 days; (3) a regulated deficit irrigation (50% of the control, applied to both sides of plant); (4) and a non-irrigated treatment, in which irrigation was withheld from both sides of the split root for 14 days, followed by full irrigation until the end of the study. Significant relationships were found between Tleaf and major physiological variables such as gs, E and An. Additionally, significant relationships were found between the difference of leaf-to-air temperature (ΔTleaf–air) and gas-exchange measurements, which were used to establish the optimum range of ΔTleaf–air as a preliminary step to the crop-water monitoring and irrigation scheduling in papaya, using thermal imaging as the main source of information. According to the results, we conclude that thermal imaging is a promising technique to monitor the physiological status of papaya during drought conditions.
Resumo:
The flavonoids (including anthocyanins) are wine compounds with important anti-oxidant activity, protecting the cells against oxidative processes, preventing cardiovascular and neurodegenerative diseases, cancer, among others (Antoniolli et al. 2015; Castañeda-Ovando et al. 2009; Hosu et al. 2014; Huang et al. 2009; Kong et al. 2003). Anthocyanins in grapes at harvest are determinant to red wine quality and their development in the grape must be characterised in order to determine the most suitable date for the harvest. Thus the aim of this research is the evaluation of anthocyanins composition in two red wine grape varieties from véraison continuing through ripening. Anthocyanins were quantified by high resolution liquid chromatography (HPLC-DAD). Additionally, the total phenols content were quantified by UV-Vis Spectrometry. The anthocyanins’ profile evolution may be dependent on the variety and ripening phase. During ripening grape samples have shown an increase of coumaryl derivatives. This information may lead us to understand the anthocyanins biosynthesis pathway in different grape varieties. The development of anthocyanins from the véraison seems to follow a pattern that coincides with the increasing accumulation of soluble sugars.
Resumo:
Traditional dry-cured sausages are highly appreciated in Mediterranean countries. The aim of the present study was to evaluate the effect of different starter cultures in the sausages Alentejano pig meat was used to prepare drycured sausages in a local factory. Staphylococcus xylosus, Lactobacillus sakei and a yeast strain were inoculated at a concentration of 106 cfu/g meat batter both in separate and in mixed culture. Three independent batches with two replicates per treatment were produced. Samples were collected throughout the ripening process. pH and aw were determined according to the ISO standards. Microbiological counts of total mesophiles, total psycrotrophs, anaerobes, coagulase-negative staphylococci (CNS), lactic acid bacteria (LAB), enterobacteria, yeasts and moulds and Listeria monocytogenes were done according to the respective ISO standards, as well as detection of Salmonella spp. Biogenic amines quantification was performed by HPLC as described by Roseiro et al. (1). The treatment with L. sakei alone was the most effective in reducing the contamination level both with Salmonella spp. and L. monocytogenes, however this effect seems to be lost in the mixed cultures. The presence of the yeast strain seems to increase the levels of phenylethylamine and histamine. The contents in cadaverine, putrescine and tyramine were generally lower in the inoculated sausages. Regarding tyramine, the treatments with L. sakei showed significantly lower values. No significant differences between treatments were observed for both spermine and spermidine.